Merkle Tree Authentication of HTTP Responses

Roberto J. Bayardo
IBM Almaden Research Center
San Jose, CA
bayardo@alum.mit.edu

ABSTRACT

We propose extensions to existing web protocols that allow
proofs of authenticity of HTTP server responses, whether or not the
HTTP server is under the control of the publisher. These extensions
protect users from content that may be substituted by malicious
servers, and therefore have immediate applications in improving
the security of web caching, mirroring, and relaying systems that
rely on untrusted machines [2,4]. Our proposal relies on Merkle
trees to support 200 and 404 response authentication while
requiring only a single cryptographic hash of trusted data per
repository. While existing web protocols such as HTTPS can
provide authenticity guarantees (in addition to confidentiality),
HTTPS consumes significantly more computational resources, and
requires that the hosting server act without malice in generating
responses and in protecting the publisher’s private key.

Categories: H.3.5 [Online Information Services]: Data Sharing
General terms: Security
Keywords: Merkle hash tree, web content distribution, authenticity

1. MERKLE TREES FOR WEB CONTENT

Merkle hash trees [5] have been proposed as a model for
authenticating query results from untrusted database servers using
only a small amount of trusted information [3]. One can view each
web repository as a database, and each HTTP GET request a query
for an individual resource. We explore the feasibility of
authenticating both 200 (OK) and 404 (NOT FOUND) responses
from untrusted web servers through appropriately exploiting
Merkle hash trees over web repositories. The appeal of Merkle trees
is that they require only that the root hash value be obtained over a
trusted channel in order to authenticate arbitrary requests to a
particular repository. We believe this property makes them
applicable for efficient authentication of most HTTP GET
responses, excepting only those involving highly dynamic content.

For a given site, our scheme involves computing a Merkle tree
structure that consists of hashes of both resources and their
canonical web paths. A canonical web path is a normalized form of
the resource URL whereby the scheme and hostname portion are
removed, escape sequences decoded, and so on. Its arrangement is
as follows: leaf mnodes represent resources, and store
cryptographically secure hashes of the resource itself and its
canonical web path. The value of a leaf node is the result of hashing
these two hash values using a cryptographically secure binary hash
function. Leaf nodes are ordered from left to right according to the
canonical web path hash value (order can be imposed by treating
this value as an unsigned integer.) This ordering provides a
mechanism for generating a proof that a specified path name is not
present in the directory without disclosing the path names of the
files that are present. Internal nodes consist of pointers to left and
right children that enforce the ordering. The value of each internal
node is the result of hashing the values of its left and right children.
The figure in the next column depicts such a tree over a site
consisting of five resources F, F',, Fy, F5 and F.

Copyright is held by the author/owner(s).
WWW 2005, May 10-14, 2005, Chiba, Japan.
1-59593-051-5/05/0005

Jeffrey Sorensen
IBM Watson Research Center
Yorktown Heights, NY
sorenj@us.ibm.com

H(LR)

H(F|H(Cy) ‘H(Fs)‘H(Cs)‘ \H(F@\H(Co\

The client must obtain the tree’s root hash value from a trusted
source, and thereafter it need only verify that each response is
consistent with this root value in order to determine response
authenticity. For example, consider the case where the client
requests the resource identified by canonical web path C, in the
figure. The authentication path of this resource is the set of nodes
from the resource leaf to the root, and is depicted by the nodes with
bold outlines. In addition to returning the resource F,, in order to
support 200 (FOUND) response authentication, the server must
return the values of the indicated children of each node on this path,
as depicted by shading. This auxiliary authentication information
and the resource itself provides the client with all information
necessary to compute the values along the authentication path from
leaf to root. If the computed root hash matches that obtained from
the trusted source, the response is authentic. Attempts by the server
to corrupt either the response body or the auxiliary authentication
information will be detected, assuming hashing is secure.

Next, consider the case where the client issues a request for some
resource identified by canonical web path C that does not exist in
the site. To support authentication of the resulting 404 (NOT
FOUND) response, the server must somehow prove that there is no
such resource present. This is accomplished by returning values
along the two authentication paths that originate at the leaves whose
canonical web path hashes immediately precede and follow the
value H(C,;) in the before-mentioned leaf ordering. In our
example, we assume these two leaves are those for resources F 5
and F,. The server must thus return H(F,), H(C,), H(F,),
H(C,), and the values of the children of nodes along the two
authentication paths. To prove authenticity, the client verifies that
both of the authentication paths are consistent with the root hash as
in the 200 (OK) case above. Additionally, it must verify that (1)
H(C,) < H(C;) < H(C,) and (2) no other leaf exists between the
leaves that terminate the authentication paths based on their right-
left structure.

Auxilliary authentication information can be returned Base64
encoded through a special HTTP response header. For both the 200
and 404 cases, the amount of such information is proportional to the
height of the Merkle tree, which is logarithmic in the number of
resources assuming the tree is balanced.

2. ROOT HASH DISTRIBUTION

A remaining problem is that of securely delivering the root hash
value, which authenticates all of the content. Already established

H(E)H(Cy)

1182

web protocols provide three elegant methods for distribution of
this small item. These techniques are not mutually incompatible,
and may all be simultaneously used in accordance with a particular
client's policies.

DNS-SEC: The DNS system, with its distributed automatic
caching, dynamic update capability, and design for small data
records would seem to be an excellent mechanism for publishers to
use to distribute the root hash value. The hash could be published
using either the existing TXT DNS records, or through a format
extension to a new type of DNS record. Unfortunately, DNS itself
lacks authentication mechanisms. While this has not made the
internet unusable, it certainly is one of its most cited weakness.
Fortunately, DNS-SEC, the next generation of DNS, incorporates
public-key based digital signatures to authenticate the data records
returned by each query. No modification of existing protocols is
needed to support distribution of the root hash as a specially
formatted TXT DNS record, and the DNS time-to-live (TTL)
property naturally supports expiration of root hashes to handle
repository updates.

Unfortunately, DNS-SEC remains relatively undeployed at the
time of this writing. We therefore present two other approaches
which may be more feasible in the near term as DNS-SEC matures.

HTTPS to Content Provider Server: Transport layer security
(TLS) is an approach for authenticating and securing TCP/IP
communications through public-key cryptography. TLS is the
basis of the HTTPS web protocol, thus HTTPS itself could be used
as a distribution mechanism for root hash information. This
approach must involve a standardized scheme for transforming the
URI for the requested resource into the name of a trusted server for
obtaining the root hash. This is because if a URI of http:/
www.popularsite.org/ is mapped to multiple mirror servers by
multiple DNS A records, then requests for https:/
www.popularsite.org/ would also connect to these servers, which
we presume lack sufficient trust to answer HTTPS requests on
behalf of the publisher. A standardized hostname extension such as
httpa.www.popularsite.org could be created with a DNS A records
that point only to the publisher's servers, and which have the
appropriate TLS credentials to allow HTTPS connections.

Certified PKI Signed Root Hash: Distributing the root hash as
a file is subject to the attack of a malicious mirror altering content
arbitrarily, computing the new root hash, and serving the malicious
root hash instead of the true root hash. This attack can be prevented
if the root hash is digitally signed using the publisher’s private key,
the public key of the publisher is made available, and the public
key of the publisher is certified by one of the certificate authorities
recognized by the client browser. While this technique can
authenticate the content, it cannot assure the freshness of the
content. This can be ameliorated through the use of digitally signed
validity periods. The protocol could specify a standard location
within a mirrored repository where the signed root hash
information is to reside.

3. IMPLEMENTATION OVERVIEW

We now sketch the roles and responsibilities needed to
implement the proposed protocol in practice and end with a
summary of protocol overhead.

Content originators: The primary responsibilities of a content
originator include computing and maintaining the Merkle hash tree
for its web resources and distributing its root hash value through
one or more of the previously outlined methods of distribution. We
note that each site update results in a new root hash value. While
this property prohibits using the protocol for highly dynamic
content, even dynamic content typically references relatively static
images that could be effectively mirrored and authenticated
through the proposed protocol.

1183

Mirror hosts: Mirror sites must download site content from the
originators or other up-to-date mirrors, and recompute or
download the changes to the hash tree structure. Hash trees can be
maintained incrementally so that each resource modification
requires only distributing or recomputing hash information along
the authentication paths of any added or removed leaves.

In response to HTTP requests, for any user agent capable of
executing the authentication protocol, mirror hosts should return
the auxiliary authentication information through a special HTTP
response header in addition to the standard HTTP response fields
and body.

Web Browser Clients: Browsers must obtain the necessary root
hash values and verify authenticity through the root hash and the
auxiliary authentication information as has been previously
described. Browsers should also provide configurable policies in
dealing with authentication failures. In cases where many mirror
sites are available, it is plausible for the browser to be configured
to automatically fail over to an alternate site. Since authentication
failures can be the result of out of date root hash values or mirror
content rather than malicious tampering, the policy should also
dictate how root hash version conflicts should be resolved. Policies
should finally specify the handling of non-200 or 404 responses in
a manner compatible with the security requirements of the client.
Redirect requests, for example, could be returned by a malicious
server to prevent access to desired content. Clients implementing
the protocol might foil such an attack by specifying that redirects
are not a valid response to any request intended for authentication.

Overhead summary: The protocol’s impact on the
performance of web servers is small: beyond the overhead required
of HTTP, it involves only the delivery of a limited amount of
precomputed information per request. Web clients have a few
additional computational burdens, including computing
cryptographically secure hashes over response bodies in order to
recreate the root hash, and obtaining the root hash of each
repository from a trusted source. Because client-side compute
resources are typically abundant, the overhead of hash
computation is unnoticeable, especially compared to the overhead
of rendering. The overhead of retrieving root hashes over secure
channels is also small since only one request per repository is
required during the time-to-live period of the root hash value. Even
time-to-live values of a few minutes are feasible without
significant effects on browsing performance.

4. CONCLUSIONS

We believe there is an immediate need for authentication
schemes that support untrusted web serving infrastructures. Our
experiences suggest that a Merkle tree-based protocol is both a
feasible and practical solution to this problem. While we have only
touched upon some of the issues necessary for deploying Merkle
hash tree based authentication schemes for web content in this
short paper, an extended technical report is available [1] that
provides more details, including: pseudo-code for the verification
procedures, a deeper look at Merkle tree maintenance, and
experiments and experiences with an actual implementation.

5. REFERENCES

[1] R.J. Bayardo and J. Sorensen. Mirrors and Authenticity: an Enhanced
Protocol for Content Delivery. IBM Research Report RJ 10335, 2004.

[2] R.J. Bayardo, A. Somani, D. Gruhl, and R. Agrawal. YouServ: A Web
Hosting and Content Sharing Tool for the Masses, In Proc. of WWW-
2002, 2002.

[3] A. Buldas, M. Roos, J. Willemson. Undeniable replies for database
queries. In Fifth Int’l Baltic Conference on DB and IS, 2002.

[4] M. J. Freedman, E. Freudenthal, D. Mazieres. Democratizing Content
Publication with Coral. In Proc. Ist USENIX/ACM Symposium on
Networked System Design and Implementation, 2004.

[51 R. C. Merkle. Protocols for public key cryptosystems. In Symposium
on Security and Privacy, 122-134, 1980.

