
 Vinci: A Service-Oriented Architecture for Rapid 
Development of Web Applications 

Rakesh Agrawal, Roberto J. Bayardo Jr., Daniel Gruhl, and Spiros Papadimitriou* 
(ragrawal@acm.org, bayardo@alum.mit.edu, dgruhl@almaden.ibm.com, spapadim+@cs.cmu.edu)  

IBM Almaden Research Center  
650 Harry Road, San Jose, CA 95120  

 
 
 

Abstract 
Vinci is a local area service-oriented architecture designed for 

rapid development and management of robust web applications. 
Based on XML document exchange, Vinci is designed to 
complement and interoperate with wide area service-oriented 
architectures such as E-Speak and .NET. This paper presents the 
Vinci architecture, the rationale behind its design, and an evaluation 
of its performance. Specifically, we show how systems architected 
with Vinci are developed quickly, scaled effortlessly, and easily 
moved from prototype to production. 

1. Introduction 
“It’s two weeks until the beta release of the site. All you have 
is a COBOL database, an Excel spreadsheet, a financial 
consulting program written in LISP, two Pentium class 
machines, a rack of RS6000s, a team of five developers and 
a 10’pole. What do you do?”--Apologies to Zork  

Today's development cycles for web applications such as portals 
and marketplaces are short, and getting shorter. In some sense, these 
applications are never “done”. The best they can hope for is 
“sufficient for now”, with continuous improvements and 
enhancements as new requirements and features become apparent. 
This style of development contrasts strongly with more traditional 
models of software development involving large teams of coders 
who coordinate around a schedule of builds. 

This new web-centric style of software development places new 
demands on the software development infrastructure. Because 
components in such systems are changing constantly, the 
infrastructure should allow loose coupling between them. Changes 
or enhancements to server components should not require 
modification, recompilation, or even notification of client code 
unless there is a significant change in the specification. In many 
cases, operational clients should not even have to be restarted. Such 
loose-coupling of distributed components reduces coordination 
overhead, fostering faster parallel development. 

The infrastructure should support rapid prototyping as well as an 
easy transition from prototype to production. This transition often 
means moving a component to a different machine and operating 
system, and/or reimplementation of the component in a more 
efficient language. It may also mean replicating components 

responsible for performance bottlenecks or to improve quality of 
service, and employing meta-structures for load balancing across 
them and caching their results. 

Finally, the infrastructure should be light-weight in terms of 
execution speed, code base, and memory footprint. We envision 
complex applications comprised of hundreds of computing services 
scattered across a LAN. For such an application to perform well, it 
is paramount that the interactions between the components be 
efficient and extensible. 

In this paper, we describe and evaluate the Vinci architecture, 
which was created to address the requirements outlined above. 
Vinci bears a resemblance to some of the emerging wide-area 
service-oriented architectures such as E-Speak [HP01], Jini [A+99], 
or .NET [M00]. At its core, Vinci is based on non-validated XML 
document exchange in order to allow for loose connections between 
distributed components. It differs from these other distributed 
systems architectures in that it dispenses with much of the overhead 
associated with security, verification, and correctness checking 
associated with communication between untrusted parties, 
relegating these tasks to a gateway. As a result, Vinci allows very 
fast communications at the thousands of requests per second level 
between a broad collection of trusted local services. It can thus be 
viewed as a service-oriented architecture for intra-net application 
development that complements and inter-operates with heavier 
weight wide-area service-oriented systems. Vinci is language and 
platform neutral. This allows existing software packages to be 
strung together easily regardless of the language or platform 
required. In addition, this allows developers to select the language 
and platform appropriate to the task. 

1.1 Related Work 
A service oriented architecture (SOA) combines the ability to 

invoke remote objects and functions (called “services”) with tools 
for dynamic service discovery, placing an emphasis on 
interoperability. Examples of service-oriented architectures include 
HP's E-Speak [HP01], Sun’s Jini [A+99] and ONE [Sun01] 
technologies, and SOAP/UDDI [Box+00] [AIM00]. While the term 
“service-oriented architecture” is, to our knowledge, a somewhat 
recent one, related technologies have been the topic of extensive 
research since at least the early 1970’s. One such technology is the 
remote procedure call (RPC) [BN84], which allows applications to 
invoke remote functions as if they were local functions. This feature 
isolates the developer from differences in operating systems, 
implementation languages, and network protocols used between the 
various hardware and software components that comprise the 
application. 

Remote procedure call infrastructures have evolved into more 
feature-rich distributed object protocols such as CORBA [OMG00] 

 

 

*Current affiliation: Carnegie Mellon University, Dept. of Computer 
Science 
 
Copyright is held by the author/owner. 
WWW10, May 1-5, 2001, Hong Kong. 
ACM 1-58113-348-0/01/0005. 

355



and Java’s RMI [Sun99], which allow invoking object methods 
(functions which encapsulate state as well as behavior) in addition 
to traditional functions. Architectures such as Microsoft’s 
(D)COM/COM+ [M96] and Java’s Enterprise Java Beans [Sun] 
exploit RPCs and remote objects to support distributed component-
based software engineering. There are also XML-based protocols 
(e.g. SOAP [Box+00] and XML-RPC [U99]) that can allow 
interoperation between different distributed object systems. 

A common problem in building distributed applications is 
difficulty in evolving the application. Most of the service-oriented 
architectures listed above purport to reduce application rigidity by 
allowing the application to locate services dynamically through 
service registries that describe service input and output interfaces, 
among many other details. As of now, the main purpose of these 
service registries appears to be for end-user location of services that 
perform a desired task. In contrast to these wide-area service 
architectures, Vinci provides direct support of loose-coupling 
through environment services and conventions. Vinci also aims to 
provide a higher level of performance and quality of service -- one 
suitable for interactive web applications in addition to back-end 
systems integration. 
 

 
Figure 1: Vinci components.  

2. Architecture 
The Vinci system is composed of a number of levels (Figure 1). 

First, there is the communication level, which employs a protocol 
named XTalk for exchanging XML documents. On top of this is a 
series of conventions and environment services that simplify the 
task of sending messages to services and receiving results. Task 
specific services are built atop this environment infrastructure, and 
these services are monitored and restarted as needed by a control 
system. The top level consists of applications which are built by 
stringing together task-specific services. The remainder of this 
section describes first three levels and control layer. The following 
section provides an application-development case study. 

2.1 Communication Layer 
Vinci requires components and services to communicate by 

exchanging encoded XML documents. The easiest way to see how 
this works is with an example. Suppose a client wishes to get 
information on a book from the library server. It connects to the 
server and sends the following document. 
<QUERY 
xmlns:vinci=“http://vinci.almaden.ibm.com/2000/vinci”> 
 <vinci:COMMAND>lookup</> 
 <TITLE>Zen and the Art of Motorcycle Maintenance</> 

</> 
The server evaluates this document and returns:  
<RESPONSE> 
 <ISBN>0553277472</> 
</> 

Note that unlike SOAP with its default encoding rules 
[Box+00], there is no explicit typing of data in Vinci messages. 
There are two reasons for this approach. First, the sending of typing 
information in every message is an unnecessary overhead since this 
information is already implicit in the input and output schema 
definitions of the service, of which we assume the client is 
knowledgeable. Second, including typing information within each 
message complicates the evolution of both clients and servers 
because changes in this information must be synchronously 
distributed and incorporated into their implementations. 

Vinci clients and services are, in contrast, expected to access 
their document models declaratively instead of immediately forcing 
them into some rigid typed structure. By declaratively, we mean 
through non-positional, associative access, e.g. an XPath expression 
[CD99] involving the tag names of interest. In effect, any tags 
present in a document that a server or client does not understand 
will be ignored.  

Consider the following simple example illustrating the benefits 
of this approach. Suppose that the server in our previous example is 
later enhanced to return the following in response to the same 
query:  
<RESPONSE> 
 <ISBN>0553277472</> 
 <AUTHOR>Robert M. Pirsig</> 
 <PUBLISHER>Bantam Books</> 
</> 
Note that since old clients access the specific fields of interest by 
name, they continue to function without modification. They can 
later be incrementally extended to exploit the information provided 
by the added tags when convenient. Declarative data access 
facilitates loose coupling of the application components, allowing 
them to be evolved without time-consuming and error-prone 
synchronizations between client and server code bases.  

While the exchange presented above is shown in XML notation, 
the communication between Vinci components is not “pure” XML, 
but rather a semi-parsed, pseudo-binary representation of an XML 
document we call XTalk. This representation is used because most 
existing XML parsers are too expensive, in terms of code size, 
processing time and memory footprint, for use in interactive 
applications. Section 4 shows how this feature allows for Vinci to 
perform on par with optimized RPC implementations, and an order 
of magnitude faster than SOAP-based services. (Concerns about 
SOAP performance have been expressed before [Far00].) 

We provide the full specification of XTalk, along with a more 
thorough motivation, in the Appendix. To summarize, the main 
advantages of XTalk over XML are speed, size, and simplicity. 
Speed-wise, we have found our XTalk parsers to provide at worst a 
3 times speed up over a hand-optimized, bare-bones XML parser. In 
practice, when compared to full-blown XML parsers such as Xerces 
[A00], the speedup is closer to 10 times or more. Size-wise, our 
XTalk parsers are approximately two orders of magnitude smaller 
than comparable XML parsers, and memory footprints a factor of 4 
times smaller. For example, in PalmOS, our basic client, server, 
VinciFrame document model and XTalk conversion library has a 
size of only 13K. 

The simplicity of the XTalk specification results in a low cost of 
entry into creating a library that supports the protocol, making Vinci 

356



well-suited for integrating legacy applications and systems. While 
conceptually similar, pure binary document formats such as 
WBXML [MJ99] have a primary aim of minimizing document 
encoding size. This is achieved through use of symbol tables and 
various other mechanisms which complicate the specification and 
resulting parser implementations. 

None of these advantages are completely without cost. Our 
XTalk interpreters offer no type checking and conversion, well-
formedness checking, or ambiguity resolution that are features of 
many fully compliant XML parsers. However, our view is that these 
features are typically unnecessary in a deployed application. 
Documents are necessarily well-formed and unambiguous when 
constructed through programmatic document models instead of by 
hand. And should document validation or type-checking be a 
concern, Vinci allows it to be plugged in as a meta-service when 
and where as needed (see Section 2.3). 

2.2 Basic Libraries 
Vinci already includes XTalk stacks in C++, Java, Perl, Python, 

and PalmOS. These libraries contain classes to retrieve a document 
off the network and translate it into an internal document 
representation, and vice-versa. The default document representation 
used by Vinci is a light-weight and fast model we call VinciFrame, 
which is based on FramerD [H96] with a few additions. Other 
document models can be easily plugged into the infrastructure by 
extending them with two methods for converting the document to 
and from XTalk. The Java XTalk binding, for example, already 
supports the popular and easy-to-use JDOM [JDOM] document 
model as a more feature-rich (but heavier-weight) alternative. 

On top of the protocol stack, the Vinci libraries provide drop in 
structures to make creating and deploying services easy. The 
service-creator simply writes a function that accepts a document 
and returns a document. This function is then “dropped in” to one of 
the stock servers, which will handle the client connection 
management, name-service communication, threading (if desired), 
and other administrative tasks. 

To illustrate the process of service creation more concretely, let's 
look at a “hello world” example. The examples here are based on 
the Java Vinci API, though the other language bindings can be used 
similarly. 
import vinci.transport.*; 

public class HelloWorld extends VinciServableAdapter { 

  // (1) 
  public static final String 
     SERVICE_NAME = “vinci.HelloWorld”; 
 
  // (2) 
  public Transportable eval(Transportable doc) { 
    VinciFrame frame = (VinciFrame) doc; 
    String hello_string = “Hello”+ frame.fgetString(“NAME”); 
    return new VinciFrame().fadd(“GREETING”, hello_string); 
  } 
 
  // (3) 
  public static void main(String[] args) { 
    VinciServer server = 
      new VinciServer(SERVICE_NAME, new HelloWorld()); 
    server.serve(); 
  } 
} 

The primary tasks of the service builder are: (1) name the 
service, (2) provide a method which accepts the input document and 
returns the response document, and (3) run the service. Naming the 
service minimally involves selecting a character string describing 
what the service does. We use a naming convention similar to 
Java’s class naming method, though Vinci does not mandate 
anything other than that the name be representable by a Unicode 
character string. 

Providing a method which accepts the input document and 
returns the document is simplified by extending the 
VinciServableAdapter class. The user needs only to define a 
method eval() which accepts and returns a document implementing 
the Transportable interface. By default, the input document model is 
the before-mentioned VinciFrame. To have another document 
model provided to the eval function, the service creator simply 
provides an appropriate document-model factory class to the Server 
object in step (3). 

The simplest server class offered by Vinci, the VinciServer, 
implements multi-threaded serving of synchronous requests. There 
are other server classes that can support asynchronous 
communications, workflows, and/or more robust connection 
management (supporting timeouts, connection and concurrent task 
limits, and so on). Using one of these alternate server classes 
involves simply handing the Servable to the appropriate server 
object in place of VinciServer in step (3). 

An example of a client that invokes the above service is 
provided next. The document provided to the server is explicitly 
constructed from a document model. Optionally, Vinci provides 
stub code generators that accept XML-Schema specifications of the 
service interface and produce native language functions for 
invoking the service. 
import vinci.transport.*; 

public class HelloWorldClient { 

  public static void main(String[] args) throws Exception { 
    VinciFrame query = new VinciFrame() 
      .faddString("NAME", args[0]); 
    VinciFrame response = VinciClient.sendAndReceive(query,  
      HelloWorldService.SERVICE_NAME); 
    System.out.println(response.fgetString(“GREETING”); 
  } 
} 
The Vinci client classes support transparent name resolution and 
fail-over for robustness. We discuss the details of these steps in the 
following subsection. For applications that require secure 
communication, Vinci also provides SSL versions of the servers 
and clients. However, the relatively high overhead of an SSL 
connection is somewhat at odds with the Vinci philosophy, so a 
better security model would be the firewall one, which we discussed 
in the following subsection.  

2.3 Environment 
Vinci provides an environment which takes care of many of the 

administrative details of running a distributed system, such as where 
to find services, monitoring of critical services (with automated 
emergency notifications), and service lifetime management 
(starting, stopping, moving, and restarting). It also provides 
facilities for scale-up (parallelism, spraying, load balancing, 
caching) and application debugging (document validation, message 
logging). Most of these functions can be controlled through the 
Web interface appearing in Figure 2.  

357



The first of these administrative details is what is becoming 
known as service discovery. Basically, a client would like to specify 
the requirements for a particular service and get back a host and 
port where that service may be found. Vinci supports this through 
the Vinci Name Service (VNS). Clients can ask VNS for a 
particular service in one of two ways: by name or by specifying an 
XPath expression which is applied to the meta data for a service. 
VNS can be thought of as an enhanced, local service cache, 
essentially an extension to wide area service discovery mechanisms 
such as UDDI [AIM00]. 

VNS knows where services are located because when a server 
first starts, it connects to VNS and negotiates a port on which to 
service requests. Though not required, arbitrary meta-data can also 
be registered with VNS by the service creator, including input and 
output schema specifications. On service startup, VNS tells the 
service which port it should use for serving requests. As part of 
deploying the service, the service-creator has the option of 
specifying a reserved port range on which the service is to be run. 
VNS absolves the service creator from being concerned with port 
conflicts. It also uses port rotation to support immediate restarts of 
down services. 

Before issuing any requests, the Vinci client code transparently 
contacts VNS and receives a set of host and port pairs capable of 
providing the requested service. If a service is mission critical or 

heavily loaded and can be easily distributed, multiple instances can 
be deployed on different machines. For example, if a client wants to 
use a service vinci.services.Webster to look up some word 
definitions, it sends a request to VNS and receives a set of all the 
servers available capable of providing this service. It selects one at 
random and attempts to connect to it. If it cannot connect (for 
whatever reason) it tries with one of the other servers (providing a 
simple approach to high availability and load balancing). Once a 
connection is made, it sends a query document and waits until the 
response is received. The client can choose to keep the connection 
open and perform additional document exchange cycles over it, or it 
may terminate the connection and reopen it if needed again later. 
When maintaining an open connection to a single service location, a 
client will automatically spill-over to an alternate service location 
should the connection fail. 

Another feature of VNS is the ability to assign priorities to 
individual service locations. These priorities specify the order in 
which service locations are handed out to clients. When VNS is 
asked to resolve a service, unless it is asked otherwise, it returns the 
set of highest priority locations that match the specified criteria. 
This allows meta services to “intercept” requests, which they may 
then choose to pass on to lower priority services. 

 

 
Figure 2: A web-based service browser and control application. 

358



Meta-services such as caches can be used to improve system 
performance without touching any code. For example, suppose a 
service is running at level 0, and it makes sense to cache its 
responses (with some cache expiration policy, for example, a day 
or so for the dictionary information). Instead of hacking into the 
service or client code itself to provide response caching, a generic 
caching service can be registered at level 1 (see Figure 3). 
Clients, which are happily unaware of the change, subsequently 
(and transparently) become directed to the level 1 service cache. 
The original level 0 server is also oblivious to the change and 
continues to serve requests as before, though it will now serve 
only those requests resulting in cache misses. 

In a more extended example intended to illustrate additional 
benefits of configurable meta-services, a server providing 
validation, rerouting, etc., required by something like SOAP can 
be provided by chaining a series of services (Figure 4). The 
advantage to having separate meta-components is the ability to 
reuse and replace them as appropriate. For example, during 
development a validator might be layered on a service to make 
sure all the clients were sending appropriate requests. In our 
validation framework, each service name can be associated with 
an arbitrary set of constraint checkers, along with arguments 
(stored as documents) for each checker. A main constraint 

registry holds all this information. Each constraint checker is a 
separate service; the base environment services include a standard 
XML-Schema [Fal00] checker. Once the system is ready to 
transition to production, this meta-service can be deregistered to 
increase performance. 

Remote Services, Proxies, and Gateways 
Vinci communicates with the outside world through a 

proxy/gateway scheme. The proxy (Figure 5) is set up to provide an 
XTalk connection within the LAN, receive requests on it, dispatch 
heavier weight queries (such as SOAP) across the WAN, receive 
the response, and reformat it back into XTalk for return. The 
gateway (Figure 6) performs the reverse. It takes in WAN requests, 
acts as a client querying internal services, and returns the results 
over the WAN protocol. 
 

 
Figure 5: Vinci clients can connect to remote services offered on protocols such as SOAP using a proxy.  

 

 
Figure 4: Enhancing a Vinci service by stacking 

prioritized meta-services. 

 
Figure 3: Caching as a meta-service. 

359



 
Figure 6: Vinci services can be provided outside the local area using a protocol such as SOAP and a gateway.  

The gateway allows the user to specify rules as to who is 
allowed to request what services, how much work will be queued, 
limits on the types of requests, etc. We provide HTTP and e-mail 
gateways into our Vinci service collection. The e-mail gateway is 
open to the public, and currently publishes several algorithmic 
services to the data-mining and propositional logic research 
communities: 
http://www.almaden.ibm.com/cs/people/bayardo/vinci/index.html.  

We also provide end-user interfaces to many of our Vinci 
services via web forms, thin GUI clients, and a peer-to-peer instant 
messenger application called VinciP2P (itself built from Vinci 
components). VinciP2P can be thought of as a “shell” into a 
distributed operating system of services. Automated user agents 
accept command-line-like command strings, convert them into the 
necessary document invocations, and return the response (or a link 
to the response if it is too large). We and others outside our project 
have published a number of useful services to the members of our 
intranet in this manner, including document conversion (ps2pdf, 
pdf2text, image2text, wav2mp3), IBM event information, IBM 
employee directory information, language translation, data-mining, 
and radio station monitoring (users can be notified via instant 
message when specified keywords are mentioned in any of multiple 
internet-radio broadcast streams). An interaction with the IBM 
Almaden event information service is depicted in Figure 7. 
VinciP2P implements a mini-HTTP server so that large and 
unstructured service inputs (e.g. a PostScript document provided to 
ps2pdf) can be “pulled” using HTTP at the convenience of the 
service instead of eagerly pushed via XTalk. (A robust, multi-
threaded and optimized HTTP download service is one of the basic 
Vinci environment components.) 

2.4 Control Layer 
With any collection of multiple machines running many services 

each, the question of quality of service, availability, and server 
status are of paramount concern. Vinci employs a two-prong 
approach to this problem. First, each machine in the Vinci network 
can run a starter service. This service listens on a fixed port and can 
start up other services. These other services can either be started 
directly, or via a per-service “nanny” which forks the service and 
immediately restarts it if it crashes or becomes unavailable. 

Second, there is a local agent which periodically pings each 
VNS registered service with a status query, and takes action if no 
response is received. This action can range from sending an email 
or instant message to the service owner, through trying to restart the 
service automatically using a starter. Precisely what action is taken 
is specified in the VNS meta-data for the service. In addition to 

taking action, the control layer also provides a web interface to 
allow an “at a glance” summary of the system status (Figure 2). 

 
 

 
Figure 7: VinciP2P -- A peer-to-peer messenger and file-
sharing tool exposing various Vinci services to end-users. 
 

3. Application Development: A Case Study 
A primary goal of the Vinci system is to make this section as 

short as possible. Since the “heavy lifting” for most applications is 
done by stock services, many content presentation applications in 
the Vinci domain are little more than JSPs that thread a number of 
them together. 

For our case study, imagine you have been given the task of 
supplying news portlets to a company portal page. The news you 
will be presenting comes from a variety of sources, ranging from 
various web sites to contracted news feeds. Your task is to 
“normalize” these sources and provide a way that high level 
selection criteria can be applied to select the content for portlets as 

360



varied as “IBM in the News” and “Latest Advances in 
Biotechnology”. This task breaks into two pieces: Getting the data 
into a system and augmented, and searching over this augmented 
data and formatting it for presentation. We will consider each in 
turn. 
 
Content Creation 

A typical goal in content creation is to take content from some 
source form, and transform and augment it to make it more useful. 
In our example, the source data is a news article. Figure 8 depicts 
the transformation and augmentation process. Step by step, we 
have: 

1. The article is acquired, either by being pushed in from a 
feed, or pulled in from a website. For website pulling, the 
HTTP download service is used to simplify issues such as 
timeout, threading, robots.txt file handling, and so on.  

2. The article is normalized. This is done by converting it to 
a standard XML like representation with a necessary set 
of tags included (BODY, HEADLINE, SOURCE).  

3. A configuration is created to take the document through a 
number of services. Each is called in turn to and identifies 
features in the body text (or in the already extracted tags; 
e.g. the PERSON agent looks at the tags added by the 
PROPER_NOUN agent). These features are written back 
into the source document as additional tags.  

4. Once the data is fully augmented, its keys are indexed. 
Note: this step is not necessary if a document store is 
used which supports high speed querying of XML 
documents. We will assume for this example that this is 
not the case.  

Content Selection and Presentation 
A service for generating the “IBM in the News” portlet should 

return an HTML fragment for inclusion in the portal page (e.g. 
through a call to a URL as in JetSpeed [JET]). Such an application 
can be implemented as a simple JSP (or other CGI), as in Figure 9. 
This JSP assembles a query document that specifies the search 
terms, as well as which formatting service to use. In this case, an 
HTML formatter is specified to produce data suitable for direct-
inclusion into a web page. If the target was, say, a cell phone, a 
WML formatter could be used instead. 

The query document is sent to a boolean search service, which 
consults the index created earlier to identify the document 
identifiers of the relevant articles. These are then passed to the 
formatter, which retrieves the articles from the document store and 

formats them appropriately. Responses are then propagated back to 
the JSP for inclusion in the portal page. 
 

 
Figure  9: A JSP for content selection and presentation.  

 

4. Performance Evaluation 
The intent of this section is to quantify and contrast Vinci 

performance through a replicable and controlled experiment. We 
chose a synthetic task which is intended to be representative of a 
moderately CPU-intensive query that might be generated by a Web 
request, and whose granularity could be easily adjusted. This task 
involves sending a query containing a random number seed and 
desired result set size to a service that selects a random set of words 
of the specified size from /usr/dict/words, sorts them alphabetically, 
and returns them. 

In our measurements, we have a single client perform 100 
requests for a fixed result set size (500, 1000, 2000, etc., up to 
32000 words), using 10 different, uniformly distributed values for 
the random seed. The client sends requests in batches of two 
concurrent requests (or four, when two servers are involved). In the 
Vinci experiments, the client is always our Java implementation, 
and the service implementation is either Java or C++ as specified. 
The details of our machine and network configuration are as 
follows:  

� Network: 10/100Mbit switched Ethernet  

� Main server: Intel PII 366MHz, 128Mb RAM, 100Mbit 
NIC 
This machine ran all services (Vinci, SOAP and RMI) for 
single-server measurements.  

� Main client, secondary server: Intel PII 350MHz, 
192Mb RAM, 100Mbit NIC 
Primary client for single-server measurements; also ran 
VNS and all validation-related services.  

� Secondary client: Intel PII 250MHz, 64Mb RAM, 
10Mbit NIC 
Client for dual-server Vinci measurements.  

No other machines were present on the network. We used Sun’s 
JDK 1.3, Xerces 1.3.0, Apache SOAP 2.0 and Jakarta Tomcat 3.2.1 
running under Linux.  

 
Figure  8: A Vinci content creation configuration.  

361



 

(a) All (log-scale) 

 

(b) SOAP excluded (linear) 

Figure 10: Single-server performance 

 

Results 
Our main set of measurements for baseline performance (see 

Figure 10 and Table 1) uses a single, multi-threaded server to 
answer all requests. As can be seen, the Java/Vinci implementation 
suffers only a slight slowdown (about 40%) when compared to Java 
RMI, which is to be expected since interpreting a Vinci document 
model is slightly more costly than the low-level serialized object 
format exchanged by RMI.  

Vinci, however, offers numerous advantages and flexibility not 
afforded by RMI. For one, Vinci was designed with easy service 
composition in mind and also provides a basic set of environment 
services (such as caching and validation). This allows building 
numerous service pipeline configurations to enhance performance 
and/or functionality.  

Compared to SOAP, the advantage is dramatic. SOAP message 
creation and parsing is a fairly involved and complicated task of 
generating an envelope, filling it, verifying it, extracting the 
necessary parameters, and so on. SOAP also typically needs to open 
a separate HTTP connection for each request. An order of 

magnitude penalty is incurred by performing these operations, most 
of which are unnecessary in a local-area application.  

Not surprisingly, the Vinci/C++ service implementation 
provides performance much better than the others. This is indicative 
of the typical development path for Vinci: prototype in a convenient 
language, then rewrite in a fast one if performance is an issue.  

 

Protocol Time (sec) Multiple 

RMI 30.9 1.00 

SOAP 349.8 11.32 

Vinci/Java 43.9 1.42 

Vinci/C++ 20.9 0.68 

Vinci/Java (dual server) 24.9 0.81 

Vinci/Java (local cache) 17.6 0.57 

Vinci/Java (remote cache) 40.2 1.30 

Vinci/Java (validated) 268.5 8.69 

Vinci/Java (validated + cached) 41.5 1.34 
 

Table 1: Relative speed factors (result size: 4000 words) 

We next compare a number of service pipeline configurations to 
the baseline performance established above. Recall that building the 
pipeline is a simple task of starting the necessary environment 
services. One such environment service, result caching, can 
improve performance by avoiding re-execution of expensive 
operations. The generic Vinci caching service, which is written in 
Java, can be inserted anywhere along the service pipeline. It can be 
placed closer to the server to increase the chance that multiple 
clients reuse the same result, or closer to the clients to decrease 
network traffic and communication penalties. We evaluate using 
both a local (i.e. client-side) and remote (i.e. server-side) cache. In 
our configuration, the hit ratio is 90%. The times are shown in 
Figure 11a. In this case a local cache provides performance superior 
to the uncached Vinci/C++ implementation. Since the network is 
the bottleneck in this case, a remote cache is not as effective but still 
improves performance (except for the largest granularities where it 
appears the additional Java memory management costs outweighed 
any benefits of caching). A C++ implementation of the cache 
service would likely improve performance.  

Vinci supports load-balancing in numerous ways, each requiring 
only modest effort. The simplest way is to register multiple service 
instances in VNS and distribute client connections among these. 
Because a Vinci client automatically distributes connections 
randomly among all equivalent service locations, the only step 
required for this is starting the new instances. Another option is to 
use a spraying service that implements sophisticated load-balancing 
algorithms. Such a service could be added as necessary in the 
pipeline. In our experiments, we have the client explicitly connect 
to the two available service locations with a round robin policy. 
This technique is sufficient for a number of situations with 
relatively heterogeneous request sizes. With the Vinci/Java version 
of our service, adding an additional service location doubles the 
performance. Adding another C++ server did not improve 
performance significantly. We suspect this result is from the 
bottleneck moving from the server to the client side. 

362



 

(a) Caching 

 

(b) Spraying (load-balancing) 

 

(c) Input validation (log-scale) 

Figure 11: Performance of various Vinci service pipeline 
configurations 

 
 

We lastly show the impact of adding input validation. The 
validator’s task is to intercept requests to a particular service and 
contact the main validator registry to check all constraints for that 
service. The flexibility offered by our validation framework comes 
at a price, since checking all constraints involves a number of 
XTalk requests (one to each checker). However, we believe the 
tradeoff is justified; validation is typically used infrequently, and 
primarily on services exported to untrusted clients via a gateway. 
Figure 11c shows performance with input validation. There is a 
significant penalty involved, but Vinci with validation as a meta-
service is still significantly faster than SOAP. Also, note that 
inserting a cache in the pipeline almost eliminates the penalty.  

5. Conclusions 
Vinci supports fast development of efficient, scalable, and 

evolvable applications composed of loosely-coupled services that 
communicate via XML document exchange. The cost of entry into 
creating a service that can fully participate in the Vinci 
infrastructure is kept low by delegating the responsibility of 
authentication, security, XML parsing and translation to heavy-
weight gateway nodes. Services perform well by exchanging an 
easily interpreted, semi-parsed XML document representation 
called XTalk. Vinci service invocation overhead is roughly 
equivalent to that of a light-weight RPC protocol, and over an order 
of magnitude less than XML-based protocols such as SOAP/HTTP. 
This allows Vinci services to participate in interactive applications, 
such as Web portal front-ends, in addition to back-end integration 
tasks. Extensive environment services and control functions allow 
components to be distributed, cached, validated, and logged without 
affecting servers or clients, or even requiring they be restarted. 
Developers can thereby evolve running applications without even 
taking them out of service. 

The rapid adoption of world-wide-web protocols was arguably 
brought about by the simplicity of HTML and the resulting low 
barrier to creating a functional web page. Vinci aims to bring this 
property to service creation and communication by allowing 
complexity to be layered on cleanly, as needed, with minimal 
impact on the code base. 

Appendix: XTalk 

Motivation 
Rumor has it that XML was intended to be a variant of SGML 

simplified to the point where any DPH (“Desperate Perl Hacker”) 
could write a parser for it over one weekend. While XML is 
undeniably far simpler than SGML, the reality is that it remains of 
sufficient complexity to make parser implementation difficult -- so 
much so that large open source efforts are dedicated to XML parser 
implementation [A00]. Another side effect of this complexity is that 
parsing XML requires significant computational overhead, at least 
compared to the overhead of simple services which may wish to 
communicate by exchanging XML documents. 

XTalk is a pseudo-binary XML format intended to make the 
XML parsing task even more simple than what was originally 
envisioned by the XML creators. It is not, however, intended to be a 
replacement for general XML documents. Indeed, we expect textual 
XML to be the mainstay of document exchange. XTalk is best used 
as an intermediate XML representation exchanged by high-
performance, distributed services that run on anything and 
everything from the hand-held to the mainframe. The representation 
may also be suitable for storage in persistent XML stores. 

363



We realize that any proposal for a non-textual document 
representation may be met with considerable resistance, as it 
deviates from the primary human readability criteria that has 
motivated specifications such as SGML, HTML and XML from the 
start. Nevertheless, the need for standardizing on a non-textual 
representation has been expressed numerous times on W3C 
discussion lists and elsewhere, including one in which Tim-Berners 
Lee has expressed support for the idea [B-L99]. XTalk attempts to 
deviate from the human readability criteria as little as possible by 
representing only structural aspects of the document in binary, and 
leaving all data components in the standard UTF-8 character 
format. 

In order to ensure that XTalk is capable of representing all 
semantic components of an XML document, the XTalk 
specification was developed as a serialization format of the XPath 
XML data-model [CD99]. The design goals of XTalk are both 
simplicity and efficiency. Materializing an XTalk representation 
into a document model such as DOM or the XPath data model 
requires under 100 lines of code, and even fewer lines are required 
for converting JDOM, DOM [DOM] or XPath data models into 
XTalk. Converting XTalk into XML is also a (nearly) trivial task. 
We believe this strongly mitigates any concerns of non-human 
readability. 

Much of XTalk is also motivated by the Canonical XML 
specification [Boy00], even though the goals of these specifications 
are orthogonal. Canonical XML is a textual XML representation 
that allows one to determine if two (or more) physically different 
XML documents are logically equivalent by simply checking if 
their canonical representations are identical. Canonical XML 
documents use only a subset of XML constructs, thereby 
eliminating many of the complexities fully XML-compliant parsers 
must deal with. Just to name a few, this includes: 

� DTD's (and associated complexities including default 
attributes and entity refs.)  

� multiple character encodings  
� multiple ways of encoding character data (e.g. 

<!CDATA[&... vs. &amp; vs. &#38;)  
� different quoting characters  
� different ways of defining empty elements (single tag vs. 

start/end tags)  
� comments  
� whitespace within tags  

Indeed, canonical XML itself seems to be a reasonable 
candidate for the XTalk specification, since writing a parser for the 
subset of XML that may appear in a canonical representation is 
much simpler than writing fully compliant XML parser. However, 
we believe that canonical XML remains sufficiently difficult and 
computationally expensive to parse that further simplifications are 
warranted. We have designed XTalk so that converting canonical 
XML document to XTalk results in no information loss; the 
canonical XML document can always be materialized from its 
XTalk representation without change. 

XTalk differs from canonical XML primarily in that it explicitly 
encodes the node structure of the document in binary, rather than 
requiring the parser to extract structure information from textual 
markers. This allows the representation to encode strings without 
the need for character references. While additional (time/space) 
optimizations of the encoding are possible, we believe most would 
result in excessively complicating parser implementation. The 
intent of XTalk is to strike a good balance between parser simplicity 
and representational efficiency. It does this by leaving all the data 

components of the XML document in character (UTF-8) format, 
and representing only the document’s tree structure in binary. While 
this pseudo-binary representation does not yield as significant a 
reduction in space as a pure binary representation such as WBXML 
[MJ99], we believe standard compression techniques can be used in 
concert with XTalk (or XML) to better achieve size-reduction goals 
without significant added complexity or performance penalty. A 
W3C comment on the WBXML specification provides a similar 
argument [C99]. 

The specification of XTalk appears below in BNF. The doc non-
terminal encodes the root node of the XPath spec, the element non-
terminal the element node, the pi non-terminal the processing-
instruction node, and the attr non-terminal encodes both attribute 
and namespace nodes. There is no separate non-terminal for the 
namespace node because XTalk represents in binary only the 
structure of the XML document. Since XML namespace 
declarations are structurally equivalent to attributes, one non-
terminal is sufficient. 

Note that every leaf component of the structure is preceded by 
the number of bytes occupied by the component, and in every 
element component, the number of sub-components precedes the 
list of sub-components. This simplifies the parser’s memory 
allocation and streaming strategies since at any point the parser 
knows how many bytes to read and allocate in order to consume the 
next component. There is no need to ever check for end of string, 
end of stream, or any other terminal indicators. 

Specification 
doc ::= ‘X’ versionid int (‘p’ pi)*  
           ‘E’ element (‘p’ pi)* 
 
versionid ::= byte 
 
element ::= string int attr* int child* 
 
child ::= (‘s’ string) 
        | (‘E’ element) 
        | (‘p’ pi) 
 
attr ::= string string 
 
pi ::= string string 
 
string ::= int utf8 
 
utf8 ::= (byte array of valid utf8 character data) 
int ::= (4 byte big-endian unsigned integer) 

Constraints: 
doc: 
Total number of pi occurrences must equal the value of the int + 1. 
 
element: 
String must abide by the XML 1.0 restrictions on tag names. 
Total number of attr occurrences must equal the value of the 
preceding int. 
Total number of child occurrences must equal the value of the 
preceding int. 
 
attr: 
First string must abide by XML1.0 restrictions on attribute names. 
Second string must abide by XML1.0 restrictions on normalized 
attribute values. 

364



References 
[A00] Apache Project, Xerces Java Parser. 
http://xml.apache.org/xerces-j/,2000.  

[AIM00] Ariba Corp., IBM Corp., and Microsoft Corp.. UDDI 
Technical White Paper, 
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf, 
Sept. 6, 2000.  

[A+99] Arnold, K.; O'Sullivan, R.; Scheifler, W.; Wollrath, A.. The 
Jini Specification. Addison-Wesley, Reading, Mass. 1999.  

[B-L99] Berners-Lee, T. W3C discussion list posting. 
http://www.lists.ic.ac.uk/hypermail-archive/xml-dev/xml-dev-Sep-
1999/0839.html, 17 Sept. 1999.  

[BN84] Birrell, A.D. and Nelson, B. J.. Implementing Remote 
Procedure Calls. ACM Transactions on Computer Systems 2, 
1(Feb. 1984):39-59.  

[Box+00] Box, D.; Ehnebuske, D.; Kakivaya, G.; Layman, A.; 
Mendelsohn, N.; Nielsen, H. F.; Thatte, S.; and Winder, D.. Simple 
Object Access Protocol. http://www.w3.org/TR/SOAP/, May 2000.  

[Boy00] Boyer, J. (ed). Canonical XML Version 1.0 specification. 
http://www.w3.org/TR/xml-c14n, Oct. 2000.  

[Br+00] Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; and Maler, 
E. (eds.). Extensible Markup Language (XML) 1.0 (Second 
Edition), http://www.w3.org/TR/REC-xml, Oct. 2000.  

[CD99] Clark, J. and DeRose, S.. XML Path Language (XPATH) 
Version 1.0, http://www.w3.org/TR/xpath, Nov. 1999.  

[C99] Conolly, D. Comment on WBXML Submission. 
http://www.w3.org/TR/DOM-Level-2-Core/, 1999.  

[D+00] Davis, M.; Le Hors, A.; Le Hegaret, P.; Robie, J.; Wood, 
L.. Document Object Model (DOM) Level 2 Core Specification, 
http://www.w3.org/TR/DOM-Level-2-Core/, Sept. 2000.  

[Fal00] Fallside, D. C. (ed.), XML Schema Part 0: Primer, 
http://www.w3.org/TR/xmlschema-0/, Oct. 2000.  

[Far00] Farley, J. Microsoft .NET vs. J2EE: How Do They Stack 
Up? http://java.oreilly.com/news/farley_0800.html, 2000.  

[H96] Haase, K. B. FramerD: Representing knowledge in the large. 
MIT Media Lab Technical report, 1996.  

[HP01] Hewlett-Packard Corp. E-speak, http://www.e-speak.net.  

[JET] JetSpeed, http://java.apache.org/jetspeed/site/index.html.  

[JDOM] The JDOM Project, http://www.jdom.org/.  

[MJ99] Martin, B. and Jano, B. (eds.). WAP Binary XML Content 
Format, http://www.w3.org/TR/wbxml/, W3C note, June 1999.  

[M96] Microsoft Corp.. DCOM Technical Overview 
(http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.h
tm), 1996.  

[M00] Microsoft Corp. The Programmable Web: Web Services 
Provides Building Blocks for the Microsoft .NET Framework. 
http://msdn.microsoft.com/msdnmag/issues/0900/WebPlatform/We
bPlatform.asp, 2000.  

[OMG00] Object Management Group. The Common Object 
Request Broker: Architecture and Specification, Revision 2.4, 
October 2000. ftp://ftp.omg.org/pub/docs/formal/00-10-01.pdf.  

[Sun] Sun Microsystems, Inc.. Enterprise JavaBeans Technology 
(http://java.sun.com/products/ejb).  

[Sun99] Sun Microsystems, Inc. Java Remote Method Invocation - 
Distributed Computing for Java. 
http://java.sun.com/marketing/collateral/javarmi.html, Nov. 17, 
1999.  

[Sun01] Sun Microsystems, Inc.. Sun Open Net Environment (Sun 
ONE) Software Architecture, 
http://www.sun.com/software/sunone/wp-arch/wp-arch.pdf, 2001.  

[U99] UserLand software. XML-RPC Specification, 
http://www.xmlrpc.com/spec, Jan 1, 1999.  

[W] Waldo, J.. The End of Protocols, 
http://developer.java.sun.com/developer/technicalArticles/jini/proto
cols.html. 

  

 
 

 

 

365


