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Abstract With the ubiquitous collection of data and
creation of large distributed repositories, enabling search
over this data while respecting access control is critical.
A related problem is that of ensuring privacy of the content
owners while still maintaining an efficient index of distrib-
uted content. We address the problem of providing privacy-
preserving search over distributed access-controlled content.
Indexed documents can be easily reconstructed from conven-
tional (inverted) indexes used in search. Currently, the need to
avoid breaches of access-control through the index requires
the index hosting site to be fully secured and trusted by all
participating content providers. This level of trust is imprac-
tical in the increasingly common case where multiple com-
peting organizations or individuals wish to selectively share
content. We propose a solution that eliminates the need of
such a trusted authority. The solution builds a centralized
privacy-preserving index in conjunction with a distributed
access-control enforcing search protocol. Two alternative
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methods to build the centralized index are proposed, allowing
trade offs of efficiency and security. The new index provides
strong and quantifiable privacy guarantees that hold even if
the entire index is made public. Experiments on a real-life
dataset validate performance of the scheme. The appeal of our
solution is twofold: (a) content providers maintain complete
control in defining access groups and ensuring its compli-
ance, and (b) system implementors retain tunable knobs to
balance privacy and efficiency concerns for their particular
domains.
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1 Introduction

While private and semi-private information on the network
has grown rapidly in recent years, mechanisms for search-
ing this information have failed to keep pace. A user faced
with the problem of locating an access-controlled document
must typically identify and search each relevant repository,
assuming of course the user knows and remembers which
repositories are relevant!

The lack of tools for searching access-controlled con-
tent on the network stems from the considerable difficulty
in creating a search-engine that indexes the content while
respecting the security and privacy requirements of the con-
tent providers. Contemporary search engines [8,26,31] build
inverted indexes that map a keyword to its precise locations
in an indexed document. The indexed document can thus be
easily reconstructed from the index. Conferred with knowl-
edge of every searchable document, the trust required of a
search engine over access-controlled content grows rapidly
with each participating provider. This enormous trust require-
ment, coupled with the potential for a complete breach of
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access control by way of malicious index disclosure, render
such an approach impractical.

In this paper we address the problem of providing an effi-
cient search mechanism that respects privacy concerns of the
participating content providers. Our solution is to build a cen-
tralized index of content that works in conjunction with an
access control enforcing search protocol across networked
providers. The centralized index itself provides strong and
quantifiable privacy guarantees that hold even if the entire
index is made public. The degree of privacy provided by
the index can to be tuned to fit the needs of the providers,
and overhead incurred by the search protocol is proportional
to the degree of privacy provided. For example, consider an
organization such as Google or Microsoft which may want to
index the access controlled repositories of several document
providers (such as patent providers). Due to privacy concerns
the providers may not want to reveal their list of patents
directly to any third party without appropriate credentials.
In this case, all of the providers could collaborate to create
a privacy preserving index which is kept at Google/Micro-
soft. Queriers can use the Google/Microsoft search service
to find providers who may have the documents they want,
and then directly contact and negotiate with the providers
to gain access to the documents. For the rest of this paper,
we will assume this as our expository example with around
eight document providers having their own content, and go
through the different algorithm steps.

We envision applications of this technology in various
sectors, where multiple organizations are actively compet-
ing as well as collaborating with constantly evolving alli-
ances. Another application domain is file-sharing through
personal webservers (e.g., YouServ [3]). For example, our
scheme could be used by individuals to share copyrighted
songs electronically with others who can authenticate they
already own the song. The providers can keep track of the
proofs supplied to allow audit of such exchanges.

Our method of providing efficient search over access-
controlled content preserves the important appeal of private
information sharing—each provider has complete control
over the information it shares: how much is shared, when
it is shared, and with whom it is shared. Index updates can
be easily handled—simply by rerunning the basic protocols
to create the global index. However, more efficient solutions
are possible, and need to be investigated.

The key contribution of this paper is to propose this notion
of a privacy-preserving search index, along with developing
two alternative methods for the construction of such an index.
The randomized construction technique is very efficient but
has lower security, and requires certain trust assumptions.
The cryptographic technique is much slower but has signifi-
cantly stronger security properties. It is also resistant to col-
lusion and makes no trust assumptions. The choice of which
technique to use can be made on the basis of the domain

requirements and acceptable tradeoffs between privacy and
efficiency. Experiments on a real life dataset validate the over-
all performance of the technique.

1.1 Organization

The rest of the paper is organized as follows. Section 2
presents the preliminaries, including the problem statement,
infrastructure assumptions, privacy goals as well as an adver-
sary model. Section 3 analyzes conventional search solutions
and presents possible privacy attacks against these. Section 4
defines a privacy-preserving index structure that can protect
against such attacks. Sections 5 and 6 provide two alternative
mechanisms (randomized and cryptographic) for construct-
ing such an index. Section 7 evaluates both construction
methods as well as the performance of the index on a real-life
dataset. Section 8 presents the related work in the literature.
Finally, Sect. 9 concludes the paper and discusses avenues
for further research.

2 Preliminaries

In this section, we define the problem of searching distributed
access-controlled content and the assumptions our solution
makes on the supporting infrastructure. We also present the
privacy goals that are the focus of this paper, followed by a
privacy spectrum for characterizing the degree with which
any solution achieves them.

2.1 Problem statement

The input to the problem of searching distributed access-con-
trolled content is a set of content providers p1, p2, . . . , pn ,
and a searcher s who issues a query q. Each provider is said
to share a set of documents with access-control determined
by the authenticated identity of the searcher s and an access
policy. The desired output is the set containing documents d
such that (1) d is shared by some provider pi for 1 ≤ i ≤ n,
(2) d matches the query q and (3) d is accessible to s as
dictated by pi ’s access policy.

2.2 Assumptions on the infrastructure

Most of the details of the query language, access policy lan-
guage, and authentication mechanism are immaterial to our
approach. We require only the following properties of each
component:

A Query language: The query language must support con-
junctive keyword queries. Additional constructs (e.g.,
phrase search, negated terms) can be supported as well,
so long as they only further constrain the result set.
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B Authentication mechanism: The authentication scheme
should allow users to authenticate themselves to each
content provider independently, preferably without req-
uiring explicit registration with each provider. For exam-
ple, client authentication through third-party signed
security certificates (e.g., SSL/TLS [13,19]) would be
satisfactory.

C Access policy language: The only requirement of the
access policy language is that content providers are them-
selves able to apply and enforce their access policies given
the authenticated identity of the searcher. This allows, for
example, each content provider to individually select a
policy language that best fits its requirements.

2.3 Privacy adversaries

Just as important as ensuring correct output for a query q
is the requirement of preventing an adversary from learning
what one or more providers may be sharing without obtain-
ing proper access rights. We will characterize solutions to the
problem in terms of their susceptibility to privacy breaches
by the types of adversaries described here.

A passive adversary is an eavesdropper who merely
observes and records messages (queries, responses, indexes)
sent in the system. Such an adversary may have either a global
(ability to observe all messages in the system) or a local (abil-
ity to observe messages sent to/from a particular content pro-
vider) view of the system. An active adversary is an entity
which acts with deliberate intent in accordance with the sys-
tem protocol to gather information. In our model, such an
adversary could inspect index structures, issue various que-
ries, or even participate in the index construction process to
facilitate such breaches. Adversaries may also collude with
each other.

Adversaries may also be categorized according to roles
they can assume. For example, most users (and hence adver-
saries) will be limited to performing the role of a searcher
since content providers are in practice likely to be a smaller
and more controlled population. The information and opera-
tions accessible through each role (searcher, provider,
indexer) can be used to facilitate different types of breaches.

2.4 Privacy goal

Privacy goal We focus on attaining the following privacy
goal with respect to a document d made searchable by some
content provider p:

Content privacy An adversary A should not be allowed
to deduce that p is sharing some document d containing
keywords q unless A has been granted access to d by p.

Other privacy goals related to distributed search but not
addressed in this paper include query privacy and provider
anonymity. Query privacy involves preventing an adversary
from determining which searcher issued what particular que-
ries. Provider anonymity involves preventing an adversary
from determining which provider published what particular
documents.

2.5 Degrees of privacy

To formally analyze a privacy-preserving scheme, we need
to characterize the degree with which Content Privacy is
attained against an adversary that does not have access to
a document d being shared by provider p. To this end, we
adapt the privacy spectrum used by Reiter and Rubin in their
analysis of Crowds [33] as shown in Fig. 1 and discussed
below:

A Provable exposure: The adversary can provide irrefutable
evidence that p is sharing d.

B Possible innocence: The claim of adversary about p shar-
ing d can be false with a non-trivial probability (e.g., with
probability in (0.5, 1)).

C Probable innocence: The claim of adversary about p shar-
ing d is more likely to be false than true (e.g., with prob-
ability in (0, 0.5]).

D Absolute privacy: The adversary cannot determine if p is
sharing d or not.

E Beyond suspicion: The adversary cannot determine if p
is more likely to be sharing document d than any other
provider.

We can replace d in the above discussion by any set of
keywords q, in which case our aim is to prevent the adver-
sary from determining whether p is sharing a document that
contains q.

3 Analysis of conventional solutions

In this section, we consider search solutions adopted by con-
ventional systems and how they might be adapted to support
search over access-controlled content. Such adaptations fail
to address our privacy and efficiency goals, but their analysis
provides insight into designing a search mechanism.

Privacy
Absolute Provable

Exposure
Possible

Innocence

Probable

Innocence

15.00

Fig. 1 Privacy on a probabilistic scale of 0 (Absolute privacy) to 1
(Provable exposure)
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3.1 Centralized indexing

The most common scheme for supporting efficient search
over distributed content is to build a centralized inverted
index. The index maps each term to a set of documents that
contain the term. The index is queried by the searcher to
obtain a list of matching documents. This is the scheme of
choice of web search engines [8], mediators [26], and the now
defunct Napster [31] network. The scheme can be extended to
support access-controlled search by propagating access pol-
icies along with content to the indexing host. The index host
must apply these policies for each searcher to filter search
results appropriately. Since only the indexing host needs to
be contacted to completely execute a search, searches are
highly efficient.
Privacy breaches: A centralized index will Provably Expose
content providers to anyone who has access to the index struc-
ture. In cases where the index host is completely trusted by
all content providers, this violation of access control may
be tolerable. Unfortunately, finding such a trusted host is
immensely difficult. Worse, compromise of the index host
by hackers could lead to a complete and devastating privacy
loss should the index be revealed publicly.

3.2 Query flooding

At the other end of the efficiency spectrum lie flood-based
schemes that send the query to all participating content pro-
viders. Such schemes include the Gnutella [21] network,
where providers locally evaluate each query and directly pro-
vide any matching documents to the searcher. We can think
of an augmented Gnutella-based search protocol that imple-
ments access control. In such a protocol, the query will be
flood along with the identity and IP address of the query orig-
inator. Providers could securely deliver search results back
to the authenticated searcher over an encrypted connection
[19]. Since content shared by a provider p resides at p alone,
providers are assured Absolute Privacy and the goal of Con-
tent Privacy is preserved.
Performance limitations: While the above adaptation has
excellent privacy characteristics, flooding suffers from poor
scalability and severe performance penalties. The protocols
hence adopt heuristics (e.g., time-to-live fields) that limit
search horizons and compromise completeness.

3.3 Distributed indexing

The performance limitations of query broadcasting have led
to work on distributed indexing methods that support efficient
search without the need for a single centralized index pro-
vider. KaZaa [28], for example, is a P2P network that lever-
ages “super-peers” (machines with above-average bandwidth

and processing power) by having them host sub-indexes of
content shared by several less capable machines.

The distributed index is used to identify a set of documents
(or hosts of documents) matching the searcher’s query. These
hosts are then contacted directly by the searcher to retrieve
the matching documents. Access control can be supported
by simply having the providers enforce their access policies
before providing the documents.
Privacy breaches: Much as in the case of a centralized index,
any node with access to a portion of the distributed index can
Provably Expose any of the providers indexed by that portion.
Worse, indexes are hosted by untrusted machines over whom
the providers themselves have no control. An active adver-
sary that does not host a portion of the index can search
the distributed index to inflict privacy breaches. For exam-
ple, the adversary can determine the precise list of providers
sharing a document with a particular keyword by issuing a
search on that keyword—a breach of Content Privacy with
Provable Exposure. Content Privacy can also be breached by
mounting phrase attacks. Such attacks take advantage of the
observation that most documents have characteristic sets of
words that are unique to them [10]. To identify a provider
sharing some document, the adversary need only compose a
query consisting of such terms for the document. The result-
ing list of sites are then known to share the document but
with Possible Innocence. By choosing an appropriate set of
terms, the adversary can achieve a near Provable Exposure.

3.4 Centralized fuzzy indexing

Some search applications do not maintain precise inverted
index lists, but instead maintain structures that allow map-
ping of a query to a “fuzzy” set of providers that may contain
matching documents. For example, YouSearch [2] builds a
centralized Bloom filter [6] index. The Bloom filter index
can be probed by a searcher to identify a list of all providers
that contain documents matching the query. The list however
is not necessarily precise, since bloom filters may produce
false positives due to hash collisions. Given such a list, the
searcher must contact each provider to accumulate results.
These schemes can be extended to support access-controlled
search by having the providers enforce their access policies
at the point a searcher requests matching documents.
Privacy breaches: Bloom filter indexes do offer limited pri-
vacy characteristics by virtue of potential false positives in
the list of providers. Each provider in the list is thus Pos-
sibly Innocent of sharing a document matching the query.
However, this privacy is spurious. An active adversary can
perform a dictionary-based attack on the Bloom filter index
to identify the term distribution of any indexed provider.
Dictionary-based attacks take advantage of the fact that sen-
tences in natural language (e.g., English) use words from
a restricted vocabulary that are easily compiled (e.g., in a
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Oxford/Webster dictionary). Thus, the adversary can
compute a hash for each word in the vocabulary. A provider
in the Bloom filter entry for such a hash is, with some prob-
ability, sharing a document with the corresponding word. In
addition, the scheme remains prone to phrase attacks.

4 A privacy-preserving index (PPI)

Any search mechanism that relies on a conventional search
index allows a provider to be Provably Exposed because of
the precise information the index itself conveys. Efficient
privacy-preserving search therefore requires an index struc-
ture that prevents Content Privacy breaches even in the event
that the index is made public. In this section, we define such
an index structure and analyze its privacy characteristics. We
show that any index satisfying our definition leaves provid-
ers with at least Probable Innocence in response to active
adversary attacks on the index structure. Section 5 presents
two algorithms for constructing such an index.

4.1 Search methodology

While a conventional inverted list maps queries to lists of
matching documents, an index that preserves privacy maps
queries to lists of matching providers. Given the list of pro-
viders that may satisfy a query, it is then up to the searcher
to directly query such providers and request matching docu-
ments. The providers, on receiving a query and authenticating
the searcher, return a list of documents filtered according to
the searcher’s access rights.

By implementing search in this manner, we have moved
the point of control from the index-hosting site to the provid-
ers. Providers can now manage and enforce access policies
themselves without relying on any central host. While there
is an efficiency penalty associated with the need to individ-
ually contact the providers, experimental results over pub-
licly shared content [2] indicate the performance of such an
approach can be quite reasonable in practice, even when there
are many (>1,500) providers.1

4.2 Definition

A PPI is a mapping function built on the set of documents
D being shared by the set of providers p1, p2, . . . , pn . It
accepts a query q and returns a subset of providers M that
may contain matching documents. In order for the function
to be considered privacy preserving, the set M for any query
q must satisfy one of the following conditions:

1 Organizations that share many documents could participate using
multiple virtual providers where each virtual provider is responsible
for handling search requests for a specific sub-repository.

A M is the null set only if there is no document in D that
matches q.

B M is a subset of providers consisting of all providers that
share a document matching q (“true positives”) and an
equal or greater number of providers that do not share a
matching document (“false positives”).

C M is the set of all providers.

The PPI must behave like a conventional index: over time
the index must return identical results for identical queries
unless indexed content itself has changed. In addition, for
any query q ′ whose results are a subset of another query
q, the result set returned for q ′ must be a subset of that
returned for q. These behavioral requirements prevent attacks
that attempt privacy breaches by filtering out of false posi-
tives.

The PPI must be implemented with care: a naive imple-
mentation could easily yield more information than is pro-
vided by the PPI definition. For example, the indexing host
might aggregate all shared content locally and preprocess it
to materialize an index with true positives alone; the false
positives as required by the definition being inserted into
results at query time. Notice that in this case the materi-
alized index itself does not correspond to PPI definitions.
A public disclosure of the materialized index would result in
Provable Exposure of content providers. Instead, we require
that a materialized index should not yield any more informa-
tion than that obtained from executing an exhaustive list of
queries against the PPI.

4.3 Correctness

The set M returned by PPI for a query q never excludes any
true positives for q. In other words, the result set for q will
contain all providers that have at least one matching doc-
ument. The searcher contacts each provider to accumulate
the results, who will release a document if and only if the
searcher is allowed to access it. Thus, searching with a PPI
leads to correct output.

4.4 Privacy characteristics

Recall that the adversary who inspects the index has no
advantage over the adversary issuing queries at will other
than the time required for exploring the space of all queries.
We can therefore restrict our analysis to the latter case.

Results for any query the adversary issues can correspond
to one of Cases [A], [B] or [C] as defined above. If the result
corresponds to Case [A], the adversary learns that no pro-
vider offers any document containing the specific term. All
providers are Beyond Suspicion in that none is known to be
more likely than the others to share such documents.
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If the result corresponds to Case [B], at least half of the
set of identified providers are false positives. Thus, all true
positives within the set have Probable Innocence with respect
to actually sharing a matching document. All providers out-
side the identified set are Beyond Suspicion.

If the result corresponds to Case [C], the adversary is
unable to discriminate between providers. In effect, the index
has degenerated into a broadcast-based mechanism, where all
providers are Beyond Suspicion of sharing matching docu-
ments.

To relate privacy characteristics attained by the index with
our goal of Content Privacy, we claim that by ensuring pro-
viders are always at least Probably Innocent for any inspec-
tion of the index by an active adversary, the adversary cannot
bring about a strong privacy breach by exploiting a PPI alone.
Note also that collusion between adversarial searchers offers
no additional opportunities for privacy breaches.

One limitation of our solution is that it allows an adver-
sary to determine which group has a document even though
he may not have the rights to access the document, which is a
leakage of information. The adversary may use this informa-
tion along with his other resources for malicious purposes.
This may be avoided by demanding that a querier exhibit
their credentials allowing them to search for a particular doc-
ument, or to search a group whose members it would have
access to, before executing the search. However, this would
make the search process significantly more expensive, and it
does not fit the standard search environment, which assumes
that you can search without providing your credentials. Nev-
ertheless, being aware of this leakage is important, though
being able to handle it in an efficient manner is outside the
scope of this paper.

4.5 Efficiency

Define selectivity σ of a query q to be the fraction of provid-
ers that share a document matching q. Observe that Case [B]
causes the PPI to be at least 2× less selective than an index
which precisely maps queries to providers. Also observe that
an optimally-efficient PPI must use Case [C] minimally: only
for queries that have a selectivity σ > 0.5 that precludes them
from Case [A] (trivially) and Case [B] (absence of an equal
number of false positives). Hence, the PPI need not be more
than 2× less selective than a precise inverted index. Note
however that there is an inherent trade-off between efficiency
and the degree of Probable Innocence offered by a PPI. A PPI
with optimal efficiency can never offer more than 50% false
positives for queries in Case [B].

An optimally efficient PPI yields the absolute minimum
level of privacy (an adversary’s claim is false with probability
0.5) required to satisfy the definition of Probable Innocence.
Such a low degree of Probable Innocence may be inadequate

for highly sensitive domains. Implementations should thus
offer a means by which the level of false positives can be
increased (at the expense of efficiency) to achieve a desired
privacy level for the application domain. We discuss such an
implementation scheme next.

5 Constructing a randomized PPI

A procedure for constructing a PPI must address not only the
correctness of the resulting structure, but also the potential for
privacy breaches during the construction process. Ensuring
privacy in the presence of adversarial participants is non-
trivial since the index construction process involves pooling
together information about content shared by each provider.

We now present a randomized procedure to construct an
index that is expected to be privacy-preserving for any partic-
ular query. The procedure partitions providers into “privacy
groups” of size c. Within a group, providers are arranged in
a ring. The providers execute a randomized algorithm which
has only a small probability of error. We quantify this proba-
bility of error and show that by tuning a parameter, the error
can be made small enough to be irrelevant. We show that the
construction process ensures that providers are resilient to
breaches beyond Probable Innocence.

There are two exceptions where a provider may suffer
a breach larger than Probable Innocence from adversaries
within its privacy group. Providers who immediately pre-
cede an active adversary will be assured of only Possible
Innocence with respect to sharing documents with a particu-
lar term. Specifically, an adversary neighbor can determine
whether its predecessor along the ring is sharing a specific
term with at best 0.71 probability.

The second exception is for a provider when both its
neighbors along the ring collude against it. In such a case, the
provider can be Provably Exposed as sharing documents con-
taining particular terms. We argue that such a breach can be
minimized by having providers choose their two neighbors
on the ring based on previously established real-world trust
relationships. However, when this is not possible, technical
solutions are desirable to solve the problem.

Section 6 presents such a technical solution—a deter-
ministic secure procedure for generating a privacy-preserv-
ing index. This procedure eliminates the two exceptional
breaches discussed above. However, the secure approach is
less efficient than the randomized procedure. The choice of
procedures can be made based on the security and efficiency
demands of a particular domain. For the rest of this section
and the next, we use the expository example presented in the
introduction to help clarify how the different algorithms work
and how the privacy preserving index can be constructed. In
this example, we assume that there are eight providers that
would engage in creating the index.
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Perform r rounds

Fig. 2 Index construction proceeds over r rounds

5.1 Content vectors

Our procedures require that each provider ps summarize
terms within its shared content through a bit vector Vs called
its content vector. For example, a content vector might be a
bloom filter [6] of system-specified length L which is formed
as follows. Each provider ps initializes its Vs by setting each
bit to 0. Next, for each term t appearing in its shared con-
tent, the provider uses a specified hash function H with range
1, 2, . . . , L to set position H(t) in Vs to 1.

The content vectors thus formed are summaries of shared
content at a provider. For example, a bloom filter Vs can
be used to deduce if a provider ps is sharing a document
with term t as follows. We can hash t to a bit position in
the bloom filter from provider ps . If the bit is 0, then it is
guaranteed that ps shares no documents containing t . If the
bit is 1, then the term might or might not occur at ps since
multiple terms might hash to the same value thus setting the
same bit in Vs . The probability that such conflicts occur can
be reduced by increasing the length L and/or using multiple
hash functions. For the sake of our example, assume that
L = 10. Thus, each provider will have a content vector of
length 10.

5.2 Privacy groups

The construction process starts by partitioning the space of
providers into disjoint privacy groups of size c > 2 each. As
we show later, the size of a privacy group is proportional to
the degree of privacy enjoyed by each participant. Assume
for now the partitioning scheme assigns members to groups
at random.

For each privacy group G, the providers are arranged in
a ring p1, p2, . . . , pc (see Fig. 2). We use the terms suc-
cessor and predecessor of a provider in the usual way with
respect to this ordering, with the additional requirement of
p1 being defined as the successor of pc (and pc the predeces-
sor of p1). For our example, assuming that c = 4, we must
group the providers into two rings of four providers each.

INDEX ONSTRUCTION

for

do

if

then SET WITH PROB

if

then SET WITH PROB

END

Fig. 3 Processing of V ′
G at ps in step s of round r

For now, we assume that the providers are simply grouped in
sequence. Thus, the providers {P1, P2, P3, P4} form the first
group, while the providers {P5, P6, P7, P8} form the second
group. Clearly, when assigning at random, the arrangement
could be quite different. However this simple arrangement
makes it easier to explain the remaining steps.

5.3 Group content vectors

Define the group content vector of a group G as the vector
VG resulting from performing a logical OR of the set of all
content vectors from each provider in G. The next part of the
construction is a randomized algorithm for generating the
group content vector.

The construction involves performing r rounds in which a
vector V ′

G is passed from provider to provider along the ring.
Each provider, upon receiving the vector, performs the bit-
flipping operations outlined in Fig. 3 before passing the vec-
tor on to its successor. After r trips around the ring, the vector
is sent to a designated index host.

The vector V ′
G is initialized by p1 to a vector of length

L with each bit independently set to 0 or 1 with probability
1/2. Each round is associated with probabilities Pin and Pex

such that Pin + Pex = 1 with Pex = 1/2 initially. After each
round, Pex is halved and Pin set appropriately.

This process of randomly flipping bits in V ′
G is designed

so that the end result tends towards the group content vector
with high probability as we show (Lemma 5.2). Randomiza-
tion of the bit flips is used to prevent a malicious provider
within the provider group from being able to determine with
any certainty the value of bits in the content vector of other
providers (Theorem 5.6).

We now go through the process with our example problem.
Since the same operations occur for each group, we only go
through the process for one group. Table 1 shows the content
vectors of the providers in the first group along with their
group content vector (logical OR) that must be constructed
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Table 1 Content vectors for the providers and the required final Logical
OR

V1 V2 V3 V4 Logical OR

0 0 1 1 1

1 0 1 0 1

0 0 1 0 1

0 1 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 1 0 1

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

securely. Table 2 presents the iterations of the index con-
struction algorithm, showing the intermediate result in each
round, along with its evolution as it goes through each of the
providers. Assuming r = 3, the algorithm goes through three
rounds. The corresponding probabilities Pex, and Pin are also
displayed, along with the difference between the intermedi-
ate result and the real group content vector at the end of
each round. One can now infer the working of the algo-
rithm. For example, in round 1, the random initial bit at
position 1 is 1 while V1[1] = 0. Therefore with probabil-
ity Pex = 0.5, this bit is flipped. In this particular case, the
bit does not get flipped, when it goes to provider P2. How-
ever, in bit position 10 the input is 1 while V1[10] = 0, and
it does get flipped. Similar changes occur throughout the
rounds at different providers. It can be easily seen that just
3 rounds are sufficient for the computed result to exactly
match the real group content vector. Running through addi-
tional rounds will keep matching this with very high
probability.

5.4 Global index

After the r bit-flipping rounds are complete, the vector V ′
G

from each provider group is sent to a designated index host.
The index host receives these vectors from each privacy
group along with a list of all providers in the privacy group. It
then aggregates these vectors into a materialized index M I .
The M I maps a bit position i to a list of providers that belong
to privacy groups whose content vector has i set to 1. More
formally, M I (i)= {p|p ∈ G ∧ V ′

G[i] = 1 for some privacy
group G}. With respect to our example the group vectors
created for the two groups would be aggregated to create the
final materialized index.

5.5 Querying with PPI

Recall that a PPI must map each query q to a set Mq that
corresponds to one of the three cases defined in Sect. 4. So
far we have defined our M I mapping to map bits to provid-
ers, but the process of using M I as a PPI that maps queries
to providers is straightforward: Mq is formed by first taking
the conjoined terms Q specified in q and looking up each
term’s bit position 1 . . . L in M I using the system-specified
lookup (hash) function H . The provider list is formed by
taking the intersection of M I (i) for each such bit. More for-
mally, Mq = ∩t∈Q M I (H(t)). The M I thus serves as an
implementation of PPI.

5.6 Correctness

We now show that the mapping PPI from a query q to pro-
vider set Mq is expected to satisfy the conditions required of
a PPI. First, we show that the set of providers Mq contains
all providers that share documents matching q, which is a
necessary condition for cases [A] and [B] of the definition.

Table 2 Algorithm iterations
Init Round 1 Round 2 Round 3

Pex = 0.5, Pin = 0.5 Pex = 0.25, Pin = 0.75 Pex = 0.125, Pin = 0.875

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1 1 1 1 0 0 0 1 1 1 1 1

1 1 0 1 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0

Difference = 6 Difference =3 Difference = 0
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Lemma 5.1 Assuming each vector V ′
G used to create the

mapping PPI is equivalent to or subsumes the group con-
tent vector VG of its group G, the mapping Mq contains all
providers that share a document matching q.

The above claim follows from the simple fact that group
content vectors are a logical OR of the individual content
vectors from each group member. Thus, each list obtained
from PPI given some term t is guaranteed to contain all pro-
viders sharing documents with the specific term. Now we
establish the qualifying assumption.

Lemma 5.2 Let c be the number of providers in a privacy
group G. For any 0 < ε < 1, at the end of r ≥ max
(3,− log [1 − { 8

7 (1 − ε)}1/(c−1)]) rounds, a bit b that is 0
in VG is also 0 in V ′

G with probability 1 − e−c, while a bit b
that is set to 1 in VG is also 1 in V ′

G with probability 1 − ε.

Proof Let us first consider the case when b = 0 in VG . This
means that none of p1, p2, . . . , pc will set b to 1. If b was
0 in V ′

G at the start of the construction, it stays 0 until the
end. If b was 1 at the start of the construction, each provider
in G will attempt to reset it at each step of every round with
probability pex of the round. The probability that b is still 1
at the end of r rounds is �r

i=1(1 − 1/2i )c ≤ e−c.
Now consider the case when b = 1 in VG . Note that in the

worst case, only p1 has b = 1 in V1 and the rest of pi attempt
to set b to 0. Consider the value of bit b at the start of the r th
round. Let b be 0 with probability P0 and 1 with probability
P1. In the r th round, Pex = 1/2r and Pin = 1 − Pex. The bit
b is 1 at the end of round r with probability P(b = 1) = (1−
Pex)

c−1(P1 + Pin P0) = (1− Pex)
c−1(P1 + (1−1/2r )P0) =

(1− Pex)
c−1(P1+ P0− P0/2r ). But P1+ P0 = 1 and P0 ≤ 1.

This means P(b = 1) ≥ (1 − Pex)
c−1(1 − 1/2r ). For r ≥ 3,

(1 − 1/2r ) ≥ 7/8. For any 0 < ε < 1, we can ensure that
b = 1 with probability 1 − ε by requiring that P(b = 1) ≥
(1 − Pex)

c−1 7
8 ≥ 1 − ε or (1 − 1/2r ) ≥ [ 8

7 (1 − ε)]1/(c−1) or
r ≥ − log [1 − { 8

7 (1 − ε)}1/(c−1)]. ��
Lemma 5.2 shows that we can make V ′

G subsume the group
content vector VG with probability arbitrarily close to one by
increasing the number of rounds. Henceforth, we assume that
the number of rounds has been appropriately chosen so that
we can safely assume subsumption. Given this assumption,
we have established the following:

Theorem 5.3 For any query q with conjoined terms Q,
Mq = ∩t∈Q P P I (H(t)) contains all providers that share
documents matching q.

All that remains to establish that the mapping Mq is
expected to meet the requirements of a PPI is to demon-
strate that should Mq be non-empty, then it is expected to
contain at least half false positives, or be equivalent to the
entire provider set.

Lemma 5.4 Let n be the number of providers indexed by
PPI. For query q with selectivity σ , the expected number of
groups that have a provider sharing a document matching q
is n

c × [1 − (1 − σ)c].
Proof The probability that no provider in a group shares a
document matching a query with selectivity σ is 1 − σ mul-
tiplied across all group members, or (1 − σ)c. The expected
number of groups that share at least one such document is
thus one minus this number multiplied by the total number
of groups, or n

c × [1 − (1 − σ)c]. ��
Case [B] asks that a query q with selectivity σ < 0.5 be

mapped to at least 2σn providers. The construction ensures
that should one provider in a privacy group share a document
matching a query, that all other members of its group will be
contained in the mapping Mq . From Lemma 5.4 we know that
a query q with selectivity σ is mapped to n[1 − (1 − σ)c]
providers. Thus, Case [B] holds if 2σn ≤ n[1 − (1 −σ)c] or
2σ +(1−σ)c ≤ 1. As c increases, values of σ that satisfy the
equation will increase. For c = 4, the condition is expected
to hold for 0 < σ ≤ 0.456, while for c = 10, the values are
0 < σ ≤ 0.499.

What if σ for a query q lies beyond this range? The defi-
nition states that the constructed index must follow (the only
remaining) Case [C]. In other words, the term must map to
n providers. For the constructed index, this is not true as
n[1 − (1 − σ)c] < n for all c and σ 	= 1. However, we can
make n[1 − (1 − σ)c] → n by increasing c. For example,
for c = 4, n[1 − (1 − σ)c] ≥ 0.937n for 0.5 ≤ σ ≤ 1 while
c = 10 leads to a value of 0.999n for the same range of σ .

Theorem 5.5 The mapping Mq of providers produced by
PPI for any query q is expected to satisfy the conditions for
being privacy-preserving.

Note that we have not proved that the mapping Mq is
guaranteed to be privacy-preserving. As we have quantified
above, there is a small chance that for any particular query,
there may not be sufficient false positives, or that the result
will not quite contain the list of all providers when query
selectivity is low. Nevertheless, the data points we presented
above show that the probability is quite low for reasonable
settings of c. With respect to any given query, then, the output
of our index is expected to be privacy-preserving, and in fact
this expectation is near one for reasonable settings of c. Also
note there is no telling which of the queries lead to output
that does not precisely satisfy the definition, which limits the
opportunities for an adversary to actually exploit this fact.

We wish to emphasize that these exceptional cases are
only with respect to having a sufficient number of false pos-
itives. So long as accurate group content vectors are con-
structed (which can be guaranteed with high probability),
Theorem 5.3 implies correctness of the search output.
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5.7 Privacy characteristics

Let us next consider the privacy breaches that could occur
during index construction. Note that the final group content
vectors V ′

G do not provide an adversary with information that
cannot already be obtained from directly inspecting the PPI
itself. This gives an adversary who is outside the provider
group of another provider ps no more information about ps

than what is available to the adversarial searcher discussed
previously in Sect. 4.

What remains to be quantified then are the privacy
breaches that occur between members of a group G while
V ′

G is being generated. The communication between group
members consists of sending the current working vector V ′

G
from one provider to its successor. We assume all communi-
cations are encrypted and authenticated, and thereby immune
to interception by anyone other than the intended recipient.
Each member in G thus has a limited view of the construction
process. Still, the following theorem shows that this limited
view does leak some information that can be used for privacy
breaches by an active adversary within the group.

Theorem 5.6 Within a privacy group G, an active adversary
pa can learn that its predecessor ps is sharing a document
containing term t with probability up to 0.71.

Proof The content vector V ′
G that pa receives could have

been altered by any of the remaining c − 1 (c > 2) providers
but was modified by ps most recently. The adversary pa can
remember the content vectors from each round and attempt
to deduce bits being set by ps . Trivially, pa can deduce that
none of the members have terms that result in bits b = 0
in V ′

G at the end of r rounds. However, for ps it can deduce
more. If pa observes a bit b = 0 in V ′

G at the end of a round,
and that bit is subsequently 1 for all remaining rounds r ′,
then it can deduce that ps does not have a term that sets bit
b = 0 with probability 1 − Pin = Pex = 1/2r ′

. Moreover,
if it observes that a bit b = 1 in all the r rounds, then the
probability that ps does not have the term is �r

i=1(1 − 1/2i )

which tends to the limit of 0.29 from above. In other words,
pa has deduced that ps has a document containing the term
with probability up to 0.71. ��

More problematic is the ability with which colluding
adversaries may breach privacy. In the worst case, collud-
ing adversaries may be serving as both the predecessor and
successor of a provider ps . In such a case, the adversaries
can determine precisely the bits flipped by ps during each
round. The adversaries can then determine the content vec-
tor of ps with high probability (a privacy breach tending
towards Provable Exposure).

We suggest that such attacks can be made irrelevant if a
provider can ensure that neighboring providers in its group
are “trustworthy”. This can be achieved in practice by hav-
ing providers arrange themselves along rings according to

real-world trust relationships. However, in many situations
this may be very difficult or even impossible—in such cases
technical solutions are necessary. In Sect. 6, we present a
technical solution that solves this problem—a deterministic
secure procedure for generating a privacy-preserving index
using cryptographic techniques. However, the downside is
that it is less efficient than this protocol.

5.8 Efficiency

An ideal PPI is, by definition, at most 2× less selective
than a precise index for any given query. The index con-
structed by our algorithm maps queries to groups of size c.
In the worst case from the perspective of efficiency (but best
case from the perspective of privacy), for a given query q,
only one member of each identified group actually shares
a matching document. In such a case the index is c× less
selective than a precise index. The worst-case loss in effi-
ciency of the constructed index is thus proportional to the
degree of privacy (c) desired by its participants. However,
the expected number of providers for a query q of selectivity
σ is n[1 − (1 − σ)c] by Theorem 5.4. The loss in selectivity
is then [1 − (1 − σ)c]/σ . Figure 4 plots the loss in selectiv-
ity for different selectivity levels ranging from 0.001 to 1.0
with increments of 0.001, for different ring sizes. It can be
clearly seen, that the worst case is approached only for very
low selectivity levels. The drop off for each curve is very
quick. Indeed, assuming that queries are uniformly distrib-
uted (w.r.t the selectivity), the average loss in selectivity is
2.9245 (as computed from the figure). Given that, by defi-
nition, a privacy-preserving index must be atleast two times
as less selective compared to the original index, this is quite
good. Even if queries are not uniformly distributed, the quick
drop off leads to reasonably good results. For example, with
σ = 0.1, the loss is 3.43 for c = 4 and 6.51 for c = 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

Query Selectivity

S
el

ec
tiv

ity
Lo

ss

c=4
c=6
c=8
c=10
c=20

Fig. 4 Selectivity loss behavior

123



Privacy-preserving indexing of documents on the network

We discuss such expected loss in selectivity in more detail in
Sect. 7.

Theorem 5.7 A query q of selectivity σ has a worst-case
selectivity of c×σ and an expected selectivity of [1−(1−σ)c]
in the constructed index.

6 Constructing a PPI securely

The randomized procedure for constructing a PPI as dis-
cussed above is unable to provide the stronger privacy guar-
antees of Probable Innocence in two cases: (a) Providers who
immediately precede an active adversary are assured only
Possible Innocence, and (b) Providers who have both their
neighbors colluding against them can be Provably Exposed.
We now present a deterministic procedure for generating a
group content vector that eliminates the two privacy breaches.
The procedure uses a probabilistic homomorphic encryption
system which is described in general terms. The procedure
pays a price in efficiency for its stronger privacy guarantees as
we discuss later. As before, all of the providers are arranged
in a ring. However, only a single round is needed, instead of
the multiple rounds required in the randomized procedure.
The basic idea is for the initiator to suitably encrypt its bit
vector and pass it along to the next party. Each successive
party suitably modifies the encrypted vector (operating on it
in while encrypted), until it can finally be decrypted to give
only the global index. To explain this further, we first describe
the underlying encryption scheme and then give the actual
algorithm.

6.1 Building block: generic encryption system

We present our algorithm in a generic setting using the nota-
tion of Stern [36] to describe the homomorphic probabilistic
encryption system required. The required system consists
of:

A Security parameter k: This is the standard security param-
eter that is fixed at the time the cryptosystem is set up.
Any adversary’s computing power (algorithm running
time) is assumed to be bounded by a polynomial func-
tion in k (thus, to protect against stronger adversaries,
one only needs to increase the value of k). k also deter-
mines the size of the plain text messages and cipher text.
Thus, U (k), X (k) and Y (k) are defined as U (k) : {a|a ∈
{0, 1}u(k)}. Similarly, X (k) : {a|a ∈ {0, 1}x(k)}, and simi-
larly for Y (k). Here, u(k), x(k), y(k) are polynomial func-
tions in k used to fix an appropriately sized message
space (indeed, they possess different values in each actual
encryption system used in practice).

B Probabilistic functions f and g: used for encryption f :
U (k) × X (k) → Y (k), and decryption g : Y (k) →
X (k) respectively such that (∀(u, x) ∈ U (k) × X (k))

g( f (u, x)) = x . The encryption function is public, while
the decryption function is private. Note that the exis-
tence of a decryption algorithm implies that the function
is injective with respect to its second parameter, that is,
for (u1, x1), (u2, x2) ∈ U (k) × X (k), if f (u1, x1) =
f (u2, x2), then x1 = x2

We impose three additional properties on f and g:

B.1 The encryption function f should be homomorphic,
that is: ∀(u1, x1), (u2, x2) ∈ U (k) × X (k), f (u1, x1)

f (u2, x2) = f (u3, x1 + x2 mod x(k)) where u3 can be
computed in polynomial time from u1, u2, x1 and x2.

B.2 The encryption function f should be semantically
secure [25]. Informally, this means that for a polynomi-
ally bounded adversary, the analysis of a set S of cipher-
texts does not give more information about the clear-
texts than what would be available without
knowing S.

B.3 There exists a “hiding” function hide : U (k)×Y (k) →
Y (k), depending only on the public parameters of the
system such that: ∀(w, x) ∈ U (k) × X (k),∀u ∈ U (k),
hide(u, f (w, x)) = f (uw′ mod w(u), x) where w′
can be computed in polynomial time from w, x . Indeed,
hide can be defined by hide(u, x) = f (u, 0) ∗ x .

Several encryption systems (e.g., Goldwasser-Micali [7],
Benaloh [5], Naccache-Stern [30], Okamoto-Uchiyama [32])
satisfy all of the three properties required above. Any of these
cryptosystems can be used in our algorithm described next
(they each simply have different values for x(k), y(k) and
u(k).

6.2 Secure group content vectors

As before, the procedure starts with each provider summa-
rizing terms within its shared content through a bit-vector
Vs . The space of providers is then partitioned into disjoint
privacy groups of size c > 2 each. Each group fixes one of
the suitable cryptosystems described above. The construc-
tion procedure itself is different from the previous discussion,
requiring only a single round along the ring to construct the
group content vector.

The first provider, p1, generates a public key E and private
key D for the chosen cryptosystem. The public key, E , is sent
to all the parties. The private key, D, is secret and known only
to p1. The procedure constructs an encrypted group content
vector EncVG which is decrypted by p1 using D to obtain
VG . The group content vector VG is sent to the designated
index host. The index host receives these vectors from each
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Fig. 5 Processing of EncVG at
ps in step s

privacy group along with a list of all providers in the privacy
group. It then aggregates these vectors into a materialized
index M I and enables queries on the M I as before.

The vector EncVG is initialized by p1 to a vector of length
L with each bit independently set to an encryption of O
(i.e., ∀i, EncVG [i] = E(w, 0), with w chosen uniformly
at random from U (k)). The vector EncVG is passed along
the ring. Each provider upon receiving EncVG , performs the
actions outlined in Fig. 5 before passing the vector on to its
successor.

The steps are designed to allow a provider p to set the i th
element of EncVG to a random encryption of 1 if the i th bit
of Vp is 1. Otherwise, the i th element of EncVG is kept the
same, but obfuscated by setting it to a different encryption
of the same clear-text. Finally, once the round is over, p1

decrypts the vector it gets with the private key D to retrieve
the group content vector V ′

G , i.e., V ′
G = D(EncVG). Note

that the protocol works even if p1 is a third party that simply
collects the group content vector. It could also be one of the
providers in another group.

With respect to our expository example, we go through
the working of the algorithm, just as in Sect. 5 with the same
provider content vectors, and parameter values. As earlier,
we simply go through the index construction process for
the group consisting of providers {P1, P2, P3, P4}. Table 3
shows the single round that the secure construction proce-
dure goes through. As discussed above, the initial vector is
set to random encryptions of 0. All of the ri stand for ran-
dom values selected by each provider as necessary. The ri∗
(correspondingly ri ∗ ∗, and ri ∗ ∗∗, represent the effect of
the hide operation when carried out over the input ri (cor-
respondingly ri∗, and ri ∗ ∗). For example, on receiving the
first bit, since V1[1] = 0, it merely hides what it receives,
thus sending out E(r1∗, 0). On the other hand, for bit posi-
tion 2, P3 receives E(r13∗, 1), but since V3[2] = 1, it send
out a fresh encryption of 1, namely, E(r14, 1). At the end,
the final vector can be decrypted to receive the real group
content vector. The rest of the steps after this are as earlier.

6.3 Correctness

We now show that the mapping M I constructed using the
cryptographic procedure satisfies the conditions required of a

Table 3 Secure construction procedure example

Init P1 P2 P3 P4

E(r1, 0) E(r1∗, 0) E(r1 ∗ ∗, 0) E(r11, 1) E(r12, 1)

E(r2, 0) E(r13, 1) E(r13∗, 1) E(r14, 1) E(r14∗, 1)

E(r3, 0) E(r3∗, 0) E(r3 ∗ ∗, 0) E(r15, 1) E(r15∗, 1)

E(r4, 0) E(r4∗, 0) E(r16, 1) E(r16∗, 1) E(r16 ∗ ∗, 1)

E(r5, 0) E(r5∗, 0) E(r5 ∗ ∗, 0) E(r5 ∗ ∗∗, 0) E(r5 ∗ ∗ ∗ ∗, 0)

E(r6, 0) E(r6∗, 0) E(r6 ∗ ∗, 0) E(r6 ∗ ∗∗, 0) E(r6 ∗ ∗ ∗ ∗, 0)

E(r7, 0) E(r7∗, 0) E(r7 ∗ ∗, 0) E(r17, 1) E(r17∗, 1)

E(r8, 0) E(r18, 1) E(r18∗, 0) E(r18∗∗, 1) E(r18 ∗ ∗∗, 1)

E(r9, 0) E(r9∗, 0) E(r9 ∗ ∗, 0) E(r9 ∗ ∗∗, 0) E(r9 ∗ ∗ ∗ ∗, 0)

E(r10, 0) E(r10∗, 0) E(r10 ∗ ∗, 0) E(r10 ∗ ∗∗, 0) E(r10 ∗ ∗ ∗ ∗, 0)

PPI. We first show that correctness is achieved as the assump-
tion in Lemma 5.1 holds true.

Lemma 6.1 Let c be the number of providers in a privacy
group G. At the end of the group content vector construction
procedure, a bit b that is 0 (resp. 1) in VG is also 0 (resp. 1)

in V ′
G.

Proof All of the bits in the vector under go the same opera-
tions. Thus to prove the correctness of the entire construction
procedure, it is sufficient to prove that a single bit of V ′

G is
the exact logical OR of the corresponding bits of the vec-
tors V1, V2, . . . , Vc (i.e., we just need to prove that VG[i] =
V1[i] ∨ V2[i] · · · ∨ Vc[i]).

Originally the vector EncVG is set to random encryptions
of 0. If Vj [i] = 1, then p j sets EncVG[i] to a random encryp-
tion of 1. Otherwise, EncVG [i] is simply set to a new encryp-
tion of the same element. Thus, EncVG [i] = E(u, 0) if and
only if ∀ j, Vj [i] = 0. Otherwise EncVG [i] = E(u, 1),
for some u ∈ U (k). Thus the decryption of EncVG (V ′

G =
D(EncVG)) correctly gives the logical OR of the correspond-
ing bit in the vectors V1, V2, . . . , Vc. ��

With Lemma 5.1 established, it is easy to see that
Theorems 5.3 and 5.5 continue to hold for the new con-
struction procedure, establishing the correctness of the con-
structed index.
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6.4 Privacy

We now establish the privacy of our procedure. First, we
prove that our protocol is secure assuming semi-honest adver-
sarial behavior. We then discuss how resilient the protocol is
to collusion and present a way to make the protocol com-
pletely resistant to collusion.

Informally, a semi-honest provider follows the rules of
the protocol using its correct input, but is free to later use
its records from execution of the protocol to enable privacy
breaches of other providers in the group. Formally, the behav-
ior can be modeled as follows:

Definition 1 (privacy w.r.t. semi-honest behavior) [23]:
Let f : {0, 1}∗ ×{0, 1}∗ �−→ {0, 1}∗ ×{0, 1}∗ be a proba-

bilistic, polynomial-time functionality, where f1 (x, y)(resp.,
f2 (x, y)denotes the first (resp., second) element of f (x, y)).
Let � be a two-provider protocol for computing f .

The view of the first (resp. second) provider during
an execution of � on (x, y), denoted VIEW�

1 (x, y)

(resp., VIEW�
2 (x, y)) is (x, u, m1, . . . , mt ) (resp.,

(y, u, m1, . . . , mt )). u represent the outcome of the first
(resp., second) provider’s internal coin tosses, and mi rep-
resents the i th message it has received.

The output of the first (resp., second) provider during an
execution of � on (x, y), denoted OUTPUT�

1 (x, y) (resp.,
OUTPUT�

2 (x, y)), is implicit in the provider’s view of the
execution.

� privately computes f if there exist probabilistic poly-
nomial time algorithms S1 and S2 s.t.

{(S1 (x, f1 (x, y)) , f2 (x, y))}x,y∈{0,1}∗
≡C {(

VIEW�
1 (x, y) , OUTPUT�

2 (x, y)
)}

x,y∈{0,1}∗
{( f1 (x, y) , S2 (x, f1 (x, y)))}x,y∈{0,1}∗
S ≡C {(

OUTPUT�
1 (x, y) , VIEW�

2 (x, y)
)}

x,y∈{0,1}∗

where ≡C denotes computational indistinguishability.

Goldreich [23] shows that in such a model, computing a func-
tion privately is equivalent to computing it securely.

Privacy by simulation The above definition says that a com-
putation is secure if the view of each provider during the
execution of the protocol can be effectively simulated given
the input and the output of that provider. Thus, in the proof of
security, we only need to show the existence of a simulator
for each provider that satisfies the above equations. The way
we prove this is by showing that we can simulate each mes-
sage received. Once the received messages are simulated, the
algorithm itself can be used to simulate the rest of the view.
Note that the simulator doesn’t generate exactly the same
message, but the probability that the simulator produces a
given message is the same as the probability that message

is seen in a run of the real algorithm, regardless of the input
data. The (random) choice of encryption keys ensures that
even with fixed input data, different runs of the algorithm
will produce different messages—but if the distribution of
the messages can be simulated, the view is equivalent to the
simulation and Definition 1 is satisfied.

This does not quite guarantee that private information is
protected. Whatever information can be deduced from the
final result is not kept private. For example, if the logical
OR vector is composed entirely of 1s then knowing its own
vector, a provider can figure out that at least one of the other
parties supports/has a 1 in a bit where it has a 0. Here, the
result reveals information to a provider. The key to this def-
inition is that nothing beyond the results is learned.

In summary, a secure protocol will not reveal more infor-
mation to a particular provider than the information that can
be induced by looking at that provider’s input and the final
output.

Theorem 6.2 The cryptographic algorithm computes V ′
G

without revealing anything to any provider other than its
input. Only p1 learns the final output, V ′

G.

Proof A simulator is presented for the view of each provider.
We only show how to simulate the messages received. The
rest of the proof trivially follows from this.

Let us first consider the case of providers p2, p3, . . . , pc.
Every provider receives the public key E from p1. This can
be simulated simply by randomly choosing a key E over the
space of possible keys. Next, the vector EncVG needs to be
simulated. Every bit of EncVG is simulated by randomly
choosing a bit b(0 or 1) and uniformly choosing a random
w from U (k), and computing E(w, b). The semantic secu-
rity property of the encryption system guarantees that no
advantage or information can be gained from the cipher-text
resulting from the encryption algorithm (even while know-
ing the public key, as long as the private key is secret). In
other words, it is not computationally possible to distinguish
between the encryption of a 0 or a 1 when w is randomly cho-
sen with uniform probability over U (k). Thus, by selecting
random values for w and b, the encrypted message gener-
ated is computationally indistinguishable from the message
received.

Now consider the case of provider p1 which actually gen-
erates a random encryption key E , as well as the original
vector V ′

G (random encryptions of 0). The only message
received is the final encrypted vector EncVG . This cannot
be generated at random since the decryption of the vector
has to match the final result. However, since the final result
V ′

G is known to p1, for each bit V ′
G[i], p1 simply generates

a random encryption of that bit (choose a random w from
U (k) and compute EncVG [i] = E(w, V ′

G [i]). Thus p1 can
generate the entire vector EncVG . This is computationally
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indistinguishable from the message it receives since in both
cases (Pc as well as the simulator)

• w is chosen randomly with uniform probability from
U (k),

• generate a random encryption of the same actual clear-
text bit V ′

G[i]. ��
The semi-honest model is not actually a limiting factor

for our protocol. Though we have proved the security of our
protocol under the semi-honest model, it is actually resilient
to more powerful adversaries. However, one assumption that
we make is that secure authenticated communications are
used—this is quite easy to ensure, using PKI for example,
and is outside the scope of this paper. With this assumption,
it is easy to show the resiliency of our protocol. Since only
a single round of communication takes place, either a par-
ticipant can refuse to interact or else simply manipulate the
message it sends forward. Refusal to interact can be directly
detected and dealt with, outside of the protocol. Manipula-
tion of a message can only lead to change in the created index
(however this can also be easily done through manipulation
of input, which is quite outside the scope of even the mali-
cious model). When threshold encryption is used to make the
protocol collusion resistant (this is discussed in detail below),
there is no way in which any provider can learn the private
input of any other provider. cannot learn anything more about
any other provider’s vector. Thus, in this sense, our protocol
is resilient to malicious adversaries. This makes the protocol
quite secure.

6.4.1 Collusion

We now discuss how resilient the protocol is to collusion.
In fact, collusion affects the protocol much less. The prede-
cessor and successor of a provider cannot collude against the
provider to reveal any additional information. Since the
encryption is semantically secure, without knowing the decr-
yption key, either 0 or 1 is equally likely. The only possibility
for collusion is if p1 (knowing D) colludes with any other
provider pi . In this case, the O R vector upto pi−1 will be
revealed to pi . However, based on trust relations, an appro-
priate provider can be chosen to do key generation. The trust
requirements here are much reduced from those required by
the randomized procedure of the previous section.

With a minor modification, we can easily create a com-
pletely secure protocol, that eliminates even the trust require-
ments on p1 and hence prevents collusion breaches. The
key idea is to use a stronger encryption system, specifi-
cally the threshold homomorphic encryption system, during
group content vector construction. A threshold homomor-
phic encryption system is an encryption system that has all
the properties of a standard homomorphic encryption system

(presented above) and has the following additional
properties:

C the public key E is known to all providers,
D the decryption key D is shared between all the providers,
E any provider can encrypt a message, and
F decryption of a message requires participation by at least

T providers.

By setting the threshold T = c, we can require the par-
ticipation of all providers for any decryption step. A formal
definition of threshold homomorphic encryption systems can
be found in [11]. A number of such systems do exist [16,12].
When such a completely secure threshold encryption scheme
is used, the protocol is actually completely resistant to col-
lusion, even in the malicious model. Due to the threshold
encryption no provider can decrypt any of the messages with-
out the help of all of the other parties. As long as at least one
party remains true, even if all of the others collude against
it, its security is guaranteed. Now, collusion can no longer
occur, and the system is perfectly secure. The only downside
with using threshold encryption is that of efficiency, which
we discuss in the following section. Thus, the cryptographic
protocol is completely secure, and can be used to construct
the privacy-preserving index, without any leakage of infor-
mation, or any trust requirements.

7 Empirical evaluation

In this section, we evaluate the behavior of analytical bounds
established in previous sections, and also the performance
of the indexing scheme on real data. We analyze both algo-
rithms (randomized and cryptographic) as well as the overall
search methodology. Specifically, we show that:

A The number of rounds required by the randomized index
construction algorithm is small in practice, leading to effi-
cient index creation.

B The probability with which an adversary provider can
breach privacy of its predecessor during the randomized
index construction algorithm tends quickly to our bound
of 0.71, which implies that careful tuning of the other
problem parameters is unlikely to be useful for avoiding
this problem in practice.

C On real data, reasonable settings of ε ensure the generated
index during the randomized index construction suffers
no loss of recall.

D The computation and communication costs scale linearly
with the size of the group for the cryptographic index
construction procedure.
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E The randomized procedure is computationally signifi-
cantly more efficient than the cryptographic method for
large datasets.

F On real data, the performance penalty of a PPI compared
to a precise provider index is roughly 2

3 ×c when averaged
over all queries.

7.1 Choice of rounds for randomized construction

We start our evaluation of the index by studying the number of
rounds required for its construction in a privacy group using
the randomized procedure. As discussed in Theorem 5.2, the
number of rounds w required in a group G of size c for
ensuring VG ⊆ V ′

G with probability 1 − ε for 0 < ε < 1 is
given by w ≥ max(3,− log [1 − { 8

7 (1 − ε)1/(c−1)}]). Thus,
w depends on c and ε. We note that w is proportional to
the processing and bandwidth costs incurred during index
construction.

Figure 6 plots the value of w for various c and ε. The
X -axis plots c on a logarithmic scale while the Y -axis plots
w. The number of rounds w grows almost linearly with log-
arithm of the size c of a privacy group. Since c determines
the level of privacy ensured for a member of G, index con-
struction scales well with the privacy requirements imposed
on it.

The curves in Fig. 6 pull up parallel to each other for
increasing ε values. As ε increases, accuracy of the group
vector increases. As can be observed, an increase in accuracy
10× (from ε = 0.100 to ε = 0.01 and then from ε = 0.01 to
ε = 0.001) results in an average increase in w by a constant
value of 2.5 rounds. Thus, the index construction process
scales well with desired ε.

7.2 Breaches within a privacy group for randomized
construction

Theorem 5.6 shows that the privacy breach during random-
ized construction procedure at a provider is the most severe to
the preceding provider in the index construction chain within
a privacy group. The privacy breach Ploss was quantified as
Ploss = �w

i=1(1 − 1/2i ). The function is plotted in Figure 7
for various values of c and ε. The X -axis plots the size c of
a group G while Y -axis plots Ploss.

Figure 7 shows that the privacy breach tends to 0.29
quickly, except for small values of c and ε. Still, the absolute
difference is quite small. This suggests that careful tuning of
c and ε cannot be used to avoid this potential privacy breach.
However, our suggestion on organizing privacy groups based
on real-world trust remains a valid option.
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7.3 Efficiency of cryptographic and randomized procedures

First, we evaluate the communication and computation cost
of the homomorphic probabilistic encryption algorithm. The
provider p1 broadcasts the key E to all other parties. Each
provider also sends the entire (encrypted) vector to the next
provider once. Thus the total communication cost is (c−1)∗
keysi ze + c ∗ L ∗ encrypted_msg_si ze = O(cl) bits, and
c − 1 + c = 2c − 1 messages (assuming the entire vector
can be sent off as a single message). Thus, the entire algo-
rithm is quite efficient in terms of communication. In terms
of computation, every provider has to perform L encryptions
(one for each bit in its vector), and finally p1 has to perform
L decryptions to get the final result. Thus, there is a total of
cL encryptions and L decryptions.

We ran tests on a SUN Blade 1000 workstation with a
900 Mhz processor and 1 gigabyte of RAM. A C implementa-
tion of the Okamoto–Uchiyama [32] encryption system was
used. The key size was fixed at 1152 bits, which is in fact more
than necessary for most applications. The computation time
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100 1000 10000 100000
encrypt 1.33s 13.06s 2.2min 21.5min
decrypt 2.11s 20.80s 3.5min 35.3min

Fig. 8 Computation time required for encryption/decryption

required for different values of L are summarized in Fig. 8.
It is obvious that the encryption/decryption cost increases
approximately linearly with the number of items. Using this
table, it is very easy to estimate the actual time required for
different number of parties and different vector sizes. For
example, five parties with vectors of size 1,00,000 would
require approximately 145 minutes. The time required would
be significantly lower with smaller key sizes and with use of
special purpose encryption hardware. All of this calculation
assumes that the entire cost of encryption is borne at run time.
However, typically for cryptographic protocols, a lot of the
work can be done offline. This is especially true for our pro-
tocols. Essentially all of the encryptions can be performed
offline, before the protocol starts (since they are all encryp-
tions of 0 or 1). During the protocol, then, the encryption
cost is only that of indexing and selecting the appropriate
encryption, or that of modular multiplications (due to the
invocation of the hide function). Of course, the decryption
of the final vector will still have to be done at runtime. The
cost of indexing is negligible. Thus for the overall protocol,
the entire cost reduces to the cost of modular multiplications,
which are quite inexpensive, and that of decryption. We esti-
mated the cost of a modular multiplication using the GMP
library on the Sun Workstation, where 1 million multiplica-
tions take 55 s. Thus, for the earlier example of five parties
with vectors of size 1,00,000, the online computation cost
would only be at most about 30 min.

Even without dividing the cost into online/offline costs,
the performance of the protocol can be greatly improved with
a simple implementation trick. Before starting the actual pro-
tocol, each party can generate sufficient number of encryp-
tions. Once this is done by all parties, they can start the actual
protocol. Since the encryptions can be done in parallel, the
overall cost would only depend on the length of the vector,
and is independent of the number of parties. Thus, for the
prior example of five parties with vectors of size 1,00,000,
the total cost would reduce to only about 50 minutes. Finally,
parallelization can significantly reduce this cost, as well.
Even a modern 3.0 Ghz Core 2 Duo processor would per-
form six times as faster, with full utilization. Quad cores, or
further parallelization across cores/computes can further sig-
nificantly reduce this cost. Thus, in actual practice the overall
computation cost can be made quite reasonable.

We now consider the cost of the threshold variant of the
encryption system. Encryption still takes the same amount of
time. Decryption time increases—it is linearly proportional
with the number of parties required to do decryption. The

1000 10000 100000 1000000
3 parties 0.010s 0.048s 0.441s 5.8s
5 parties 0.012s 0.072s 0.709s 8.3s

10 parties 0.018s 0.137s 1.36s 17.45s

Fig. 9 Computation time required for the randomized approach, 30
rounds
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most inefficient part of the system is key generation (which
generates the encryption key and the shares of the decryp-
tion key). If we assume this to be done offline, we need not
consider it to be a factor in efficiency.

We also measured the computation time of the random-
ized approach to contrast it with the cryptographic scheme.
Figure 9 gives the computation time required for different
vector sizes assuming five parties and 30 rounds (which is
significantly more than necessary). From this table it is obvi-
ous that the computation time of the randomized procedure
is negligible. For example, instead of 145 min for the cryp-
tographic approach, the randomized approach would only
take 0.7 s for five parties with 1,00,000 items. Indeed, for
this approach, the bottleneck would lie in the communica-
tion cost instead of the computation cost. It is clear that this
approach can easily scale to the order of millions of items.
This makes a compelling argument for using it as opposed
to the cryptographic approach for really large scale indexes.

7.4 Loss in selectivity in PPI

We next study the expected increase in query processing costs
incurred by the use of the constructed PPI. The increase in
costs is due to the decrease in selectivity of a term in the
constructed index. Theorem 5.7 implied that the expected
selectivity in the constructed index for a term t with actual
selectivity σ is [1 − (1 − σ)c]. The loss in selectivity can be
quantified as the ratio [1 − (1 − σ)c]/σ . Figure 10 plots this
ratio on the Y -axis against σ on the X -axis for various values
of c.
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We observe that as σ → 1, the expected loss in selectivity
diminishes to 1 for all curves. Indeed, we anticipate such a
result as almost all providers share a document with the par-
ticular term. Both the precise and the constructed index must
now map the term to all providers.

The lower selectivity range is more interesting as it cor-
responds to rare items that are shared by a few providers.
One can argue that it is the rare terms that need to be pro-
tected carefully, so that they cannot be pinned to the shar-
ing provider. We observe here that the loss in selectivity for
such terms is c. In other words, c× providers are identified
as potentially having a document sharing such a term. The
curves taper off when σnc ≥ n.

7.5 Effectiveness of V ′
G in search

Recall that a choice of c and ε determines the magnitude
of inaccuracy observed in the group content vector. We next
study the effects of such inaccuracies on the search func-
tion. Queries asked by peers in YouSearch against shared
content were logged. From a sample of 1,700 logged que-
ries, we randomly selected 100 distinct queries as our
query set.

The peers (providers) were randomly partitioned into c
sized privacy groups and indexes created for each group
for various ε values. The hash of each term in a query was
computed to determine the corresponding bit in the bloom
filters. The determined bit position was checked in the
index V ′

G for each group G. Groups that had bits for all
terms in a query q set to 1 were deemed to be relevant. The
query will then be evaluated at each of the member pro-
viders. Since group indexes constructed with larger values of
epsilon can be expected to have some bits falsely set to
0, the answers for q at such member providers will be
lost.

For each query q, define Sq to be the set of providers that
have bits for all terms in q set to 1 in their YouSearch bloom
filters. Define Rq to be the set of providers that are mem-
bers of groups deemed relevant by the constructed index.
Then, loss in recall for q due to the constructed index can be
quantified as |Sq − Rq |/|Sq |. The average loss in recall for a
query set is simply the average of loss in recall for constituent
queries.

Figure 11 plots size of privacy group c on X -axis against
the average loss in recall observed on Y -axis. Note that the
Y -axis is measured in percent (%) units. We observe that loss
in recall is very small (less than 0.2%) and decreases with
increasing accuracy ε of the index. With an epsilon setting
of 0.001, the search is effectively complete. Note that there
is no loss of recall for the cryptographic algorithm since it
computes the exact group content vector.
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7.6 Query processing cost with PPI

We next show the effects on query performance in prac-
tice by running the indexing and search algorithm on real
data obtained from a deployment of YouSearch within the
IBM corporate intranet. A content provider in YouSearch
constructs a bloom filter content vector with length L =
64 Kbits. The hash function H used for constructing the
bloom filter is computed as follows. An MD5 hash is com-
puted for each term t . The first 2 B of the 16 B long hash are
used as the value for H(t). The set of terms used to create
the content vector are extracted from the filenames and path-
names of shared files and bodies of text and HTML shared
files. The dataset used here was obtained from collecting all
bloom filters from the set of peers actively participating in
the search network at a specific point in time.

Figure 12 plots the average incurred cost observed over all
queries. The X -axis plots size of privacy group c while Y -axis
plots the average number of sites that evaluate a query. In the
absence of privacy concerns, the query would be evaluated
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only at sites that had the corresponding bit positions in their
bloom filters set to 1 (indicated as the Optimal curve). How-
ever, the index causes all c sites in a c sized privacy group to
be searched incurring a penalty in query processing cost. We
observe that increasing c leads to similar increase in query
processing costs. When averaged over all queries in our test
set, the performance penalty (and privacy benefit) is roughly
2
3 × c. An increase in ε (decrease in accuracy) also results
in decreased processing cost. However, such decreases are
merely an artifact of reduced recall due to the group content
vector inaccuracies implied by larger settings of ε.

8 Related work

Researchers have identified the importance of preserving pri-
vacy during searching. The celebrated paper by Chor et al. [9]
introduced the problem of Private Information Retrieval.
A user wishes to privately retrieve the i th bit from a data-
base, without revealing any information about i . Gertner
et al. [20] introduced the stronger model of Symmetrically
Private Information Retrieval which, in addition to main-
taining the user’s privacy, prevents the user from obtaining
any information other than a single bit of the data. The pri-
vacy of the user is defined in an information-theoretic setting,
which makes it hard to find practical and efficient schemes.
SPIR schemes often require multiple non-colluding servers,
consume large amounts of bandwidth and do not support
keyword searching. Although our scheme does not provide
information-theoretic security bounds, it has low computa-
tional and communication complexity while providing prob-
abilistic privacy guarantees.

Statistical database research strives to provide aggregate
information without compromising sensitive information
about individual records [1]. Secure databases research
attempts to prevent unauthorized access to records in the
database [29]. Popular search solutions build inverted indexes
on shared content [8,26,31]. All of these solutions assume a
trusted centralized server. We believe that autonomous con-
tent providers will find it difficult to form a consensus on
such a trusted host.

Researchers have investigated the problem of running que-
ries over encrypted data at an untrusted server [27,35]. The
schemes require the searcher to know a secret key with which
content accessible to the searcher is encrypted. The searcher
now has to explicitly maintain secret keys for each provider
she has access to. As far as we know, no previous work has
defined PPI to enable global keyword searches.

In practice, people have preferred replacing privacy def-
initions with anonymity where the requirement is that the
identity of the user (“Bob”) be masked from an adversary
(“Alice”). Low cost systems have been designed for various
applications that involve building an “anonymous channel”

that hides Bob from Alice. For example, Onion Routing [37],
Crowds [33] and Tarzan [17] allow the source of a message to
remain anonymous. Freenet [18] and FreeHaven [14] ensure
provider privacy for file sharing. Freenet supports searches
without access control over shared content. Freehaven does
not support searches but preserves the anonymity of readers.
It is not obvious how these schemes can be adapted to enable
content privacy while searching access-controlled content.

Researchers in the field of secure multi-party computation
[24] have developed theoretical methods for securely com-
puting functions over private information distributed across
any number of hosts. Recent work in this area has focused
on developing more efficient schemes for specific functions.
A bloom filter scheme using encryption for hash functions
has recently been proposed by Goh [22]. This allows search-
ing on encrypted data and is orthogonal to our work. Secure
co-processors [15] can also be used for improving the pri-
vacy of PPI construction, should one with sufficient process-
ing power, storage and bandwidth be available for use by
participating providers.

In concurrent work, Bellovin and Cheswick [4] present a
search scheme based on Bloom filters and Pohlig-Hellman
encryption to provide “query privacy” over remote data. The
index host can transform a user’s search queries to a form
suitable for querying a remote host, in such a way that nei-
ther the index host nor the remote host can deduce the original
query. This does not address the problem of allowing multiple
untrusting parties to create a single privacy preserving index
over local access controlled documents. Our work maintains
this “content privacy” and defines a data structure (PPI) that
can be achieved using Bloom filters. Schadow et al. [34] also
discuss a similar scheme to perform distributed queries via
record linkage using hash values. The main contribution is
to propose an algorithm for distributed joins using Bloom
filters for hashed record linkage. While the model is some-
what similar, as a mediator is used to merge queries, our
work is orthogonal to this, and also deals with queries at a
higher level. Rather than record linkage, we are more inter-
ested in enabling search. Once the centralized index is con-
structed, no further aggregation is necessary by the central
party.

9 Conclusions

We have addressed the challenge of providing privacy-pre-
serving search over distributed access-controlled content.
Conventional inverted indexes represent an indexed docu-
ment in its virtual entirety. The trust and security thus required
of any host providing such an index over access-controlled
content is enormous. In fact, as the number of participat-
ing information providers grows, this required level of trust
quickly becomes impractical. Our solution eliminates entirely
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the need for such a trusted indexing host through the use of
a PPI.

We defined and analyzed a PPI and presented two differ-
ent algorithms for constructing a PPI. The randomized algo-
rithm is extremely efficient but has lower privacy guarantees
and is susceptible to collusion. The cryptographic method
is significantly more secure, but is also significantly slower.
This provides an interesting tradeoff, and allows a user to
choose based on their situational requirements. We showed
that the index, once constructed is strongly resilient to privacy
breaches even against colluding adversaries. Experiments on
a real-life dataset validate performance of our scheme.

Our solution enables content providers to maintain com-
plete control in defining access groups over their content and
ensuring its compliance. Moreover, implementors can use the
size of privacy groups as a tuning knob to balance privacy
and efficiency concerns for their particular domains.

One interesting avenue for future work is that of efficiently
handling index updates. Currently, we handle index updates
simply by rerunning the basic index construction protocol.
Since this is quite efficient (especially for the randomized
algorithm), this is ok. But in many situations, index updates
can be quite frequent and more efficient solutions would be
highly desirable. Secondly, our base assumption is that the
list of providers does not change very frequently. If this is
also subject to frequent change (as in BitTorrent like applica-
tions), a more efficient solution must be found. Another issue
is that of index efficiency. While our solution meets privacy
requirements, and provides reasonable efficiency, ideally we
would like to create a solution that guarantees efficiency as
well as privacy. This is another avenue for future research.
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