
Abstract
We present a pattern-mining algorithm that scales roughly linearly
in the number of maximal patterns embedded in a database irre-
spective of the length of the longest pattern. In comparison, previ-
ous algorithms based on Apriori scale exponentially with longest
pattern length. Experiments on real data show that when the pat-
terns are long, our algorithm is more efficient by an order of magni-
tude or more.

1. Introduction
Finding patterns in databases is the fundamental operation behind
several common data-mining tasks including association rule [1]
and sequential pattern mining [4]. For the most part, pattern mining
algorithms have been developed to operate on databases where the
longest patterns are relatively short. This leaves data outside this
mold unexplorable using current techniques. Interesting data-sets
with long patterns include those composed of questionnaire results
(people tend to answer similarly to many questions), sales
transactions detailing the purchases made by regular customers over
a large time window, and biological data from the fields of DNA
and protein analysis. Most categorically-valued data-sets used for
classification problems (e.g. targeted marketing campaigns) also
tend to have long patterns because they contain many frequently
occurring items and have a wide average record length.

Almost every recently-proposed pattern-mining algorithm is a
variant of Apriori [2]. Two recent papers have demonstrated that
Apriori-like algorithms are inadequate on data-sets with long
patterns. Brin et al. [6] applied their association-rule miner DIC to a
data-set composed of PUMS census records. To reduce the
difficulty of this data-set, they removed all items appearing in over
80% of the transactions yet still could only mine efficiently at high
support. We [5] previously applied an Apriori-inspired algorithm to
several data-sets from the Irvine Machine Learning Database
Repository. In order to mine efficiently, this algorithm had to
sometimes apply pruning strategies that rendered the search
incomplete.

Apriori involves a phase for finding patterns called frequent
itemsets. A frequent itemset is a set of items appearing together in a
number of database records meeting a user-specified threshold.
Apriori employs a bottom-up search that enumerates every single
frequent itemset. This implies in order to produce a frequent itemset
of length , it must produce all of its subsets since they too must
be frequent. This exponential complexity fundamentally restricts
Apriori-like algorithms to discovering only short patterns.

To address this problem, this paper proposes the Max-Miner
algorithm for efficiently extracting only the maximal frequent
itemsets, where an itemset is maximal frequent if it has no superset
that is frequent. Because any frequent itemset is a subset of a
maximal frequent itemset, Max-Miner’s output implicitly and

concisely represents all frequent itemsets. Max-Miner is shown to
result in two or more orders of magnitude in performance
improvements over Apriori on some data-sets. On other data-sets
where the patterns are not so long, the gains are more modest. In
practice, Max-Miner is demonstrated to run in time that is roughly
linear in the number of maximal frequent itemsets and the size of
the database, irrespective of the size of the longest frequent itemset.

Max-Miner is successful because it abandons a strict bottom-up
traversal of the search space, and instead always attempts to “look
ahead” in order to quickly identify long frequent itemsets. By
identifying a long frequent itemset early on, Max-Miner can prune
all its subsets from consideration. Max-Miner uses a heuristic to
tune its search in an effort to identify long frequent itemsets as early
as possible. It also uses a technique that can often determine when a
new candidate itemset is frequent before accessing the database.
The idea is to use information gathered during previous database
passes to compute a good lower-bound on the number of
transactions that contain the itemset.

The techniques we introduce in this paper are flexible and can be
extended in various ways and applied to other algorithms. To
demonstrate this point, we optimize Apriori with the lower-
bounding technique mentioned above. While the fundamental
limitations of Apriori with respect to pattern length remain,
performance is improved by an order of magnitude on several data-
sets. We also show how Max-Miner can be extended to exploit
additional pattern constraints during its search by creating a variant
that identifies only the longest of the maximal frequent itemsets in a
data-set. This algorithm efficiently identifies all of the longest
maximal frequent itemsets even when the space of all maximal
frequent itemsets is itself intractably large.

1.1 Related Work
There are many variants of Apriori that differ in how they check
“candidate” itemsets against the database. Apriori in its purest form
checks itemsets of length for frequency during database pass .
DIC [6] is more eager and begins checking an itemset shortly after
all its subsets have been determined frequent, rather than waiting
until the database pass completes. Partition [11] identifies all
frequent-itemsets in memory-sized partitions of the database, and
then checks these against the entire database during a final pass.
DIC considers the same number of candidate itemsets as Apriori,
and Partition can consider more but never fewer candidate itemsets
than Apriori, potentially exacerbating problems associated with
long patterns.

Park et al. [9] enhance Apriori with a hashing scheme that can
identify (and thereby eliminate from consideration) some
candidates that will turn up infrequent if checked against the
database. It also uses the hashing scheme to re-write a smaller
database after each pass in order to reduce the overhead of
subsequent passes. Still, like Apriori, it considers every frequent
itemset.

Gunopulos et al. [7] present a randomized algorithm for identifying
maximal frequent itemsets in memory-resident databases. Their
algorithm works by iteratively attempting to extend a working
pattern until failure. A randomized version of the algorithm that
does not guarantee every maximal frequent itemset will be returned
is evaluated and found to efficiently extract long frequent itemsets.
Unfortunately, it is not clear how this algorithm would be scaled to
disk resident data-sets since each attempt at extending an itemset
requires a scan over the data. It also remains to be seen how the
proposed complete version of the algorithm would perform in

l 2l

l l

Efficiently Mining Long Patterns from Databases
Roberto J. Bayardo Jr.

IBM Almaden Research Center
http://www.almaden.ibm.com/cs/people/bayardo/

bayardo@alum.mit.edu

Appears in Proc. of the 1998 ACM-SIGMOD Int’l Conf. on Management of Data, 85-93.

practice.

Zaki et al. [16] present the algorithms MaxEclat and MaxClique
for identifying maximal frequent itemsets. These algorithms are
similar to Max-Miner in that they also attempt to look ahead and
identify long frequent itemsets early on to help prune the space of
candidate itemsets considered. The important difference is that
Max-Miner attempts to look ahead throughout the search, whereas
MaxEclat and MaxClique look ahead only during an initialization
phase prior to a purely bottom-up Apriori-like search with
exponential scaling. The initialization phase of MaxClique is also
prone to problems with long frequent itemsets since it uses a
dynamic programming algorithm for finding maximal cliques in a
graph whose largest clique is at least as large as the length of the
longest frequent itemset.

Concurrent to our work, Lin and Kedem [8] have proposed an
algorithm called Pincer-Search for mining long maximal frequent
itemsets. Like Max-Miner, Pincer-Search attempts to identify long
patterns throughout the search. The difference between these
algorithms is primarily in the long candidate itemsets considered
by each. Max-Miner uses a simple, polynomial time candidate
generation procedure directed by heuristics, while Pincer-Search
uses an NP-hard reduction phase to ensure no long candidate
itemset contains any known infrequent itemset. Our comparison
with Pincer-Search is thus far only preliminary, and more work is
needed to fully understand the advantages offered by each
technique.

1.2 Overview
Section 2 begins with an introduction into the basic search strategy
used by Max-Miner and the techniques used to restrict the search
space. Section 3 formalizes these techniques through pseudo-code,
provides implementation details, and establishes Max-Miner’s
correctness and efficiency characteristics. Section 4 discusses and
exploits a technique for lower-bounding the support of candidate
itemsets. Section 5 discusses the integration of additional pattern
constraints into the search, culminating in a description of the
Max-Miner-LO algorithm for finding only the longest maximal
frequent itemsets. The algorithms are evaluated experimentally in
Section 6 followed by a summary of contributions and avenues for
future work in Section 7.

2. Introducing Max-Miner
We begin with defining the necessary terminology for describing
the Max-Miner algorithm. For simplicity of presentation, we will
be dealing only with the problem of identifying frequent itemsets.
The application of our techniques to finding other patterns (e.g.
sequential patterns) is similar.

A data-set is a set of transactions that are sets over a finite item
domain. Transactions can represent things such as the supermarket
items purchased by a customer during a shopping visit, or the
characteristics of a person as described by his or her replies in a
census questionnaire. A set of items is more succinctly called an
itemset, and a frequent itemset is one that is contained in a number
of transactions above or equal to the minimum support (minsup)
specified by the user. An itemset with items will be more
succinctly referred to as a -itemset. The support of an itemset ,
denoted , is the number of transactions that contain it. The
minsup parameter will sometimes be specified as a percentage of
the transactions in the data-set instead of as an absolute number of
transactions.

Max-Miner can be described using Rymon’s generic set-
enumeration tree search framework [10]. The idea is to expand sets
over an ordered and finite item domain as illustrated in Figure 1
where four items are denoted by their position in the ordering. The
particular ordering imposed on the item domain affects the parent/
child relationships in the set-enumeration tree but not its
completeness. The figure assumes a static lexical ordering of the
items, but later we describe an optimization that dramatically
improves performance by heuristically ordering the items and
dynamically reordering them on a per-node basis. Set-enumeration

trees are not data-structures like the hash tree or trie, but instead are
used to illustrate how sets of items are to be completely
enumerated in a search problem. Note that the tree could be
traversed depth-first, breadth first, or even best-first as directed by
some heuristic. Max-Miner employs a purely breadth-first search
of the set-enumeration tree in order to limit the number of passes
made over the data.

Figure 1. Complete set-enumeration tree over four items.

The key to an efficient set-enumeration search is the pruning
strategies that are applied to remove entire branches from
consideration. Without pruning, a set-enumeration tree search for
frequent itemsets will consider every itemset over the set of all
items. Max-Miner uses pruning based on subset infrequency, as
does Apriori, but it also uses pruning based on superset frequency.

To aid in our pruning efforts, we will represent each node in the set
enumeration tree by what we call a candidate group. A candidate
group consists of two itemsets. The first, called the head and
denoted , represents the itemset enumerated by the node. The
second itemset, called the tail and denoted , is an ordered set
and contains all items not in that can potentially appear in any
sub-node. For example, the node enumerating itemset in the
figure has and . The ordering of tail
items reflect how the sub-nodes are to be expanded. In the case of a
static lexical ordering without pruning, the tail of any candidate
group is trivially the set of all items following the greatest item in
the head according to the item ordering. When we are applying
pruning and dynamic item reordering, it becomes necessary to
make the tail items explicit.

When we say we are counting the support of a candidate group ,
we are computing the support of itemsets , , and

 for all . The supports of itemsets other than
 are used for pruning. For example, consider first the itemset

. Since contains every item that appears in
any viable sub-node of , if it is frequent, then any itemset
enumerated by a sub-node will also be frequent but not maximal.
Superset-frequency pruning can therefore be implemented by
halting sub-node expansion at any candidate group for which

 is frequent. Consider next the itemset for
some . If is infrequent, then any head of a sub-
node that contains item will also be infrequent. Subset-
infrequency pruning can therefore be implemented by simply
removing any such tail item from a candidate group before
expanding its sub-nodes.

3. Formalizing Max-Miner
We now provide a pseudo-code description of Max-Miner
followed by the motivation behind and description of the item
ordering policy. Implementation details describing how Max-
Miner can use the same data-structures as Apriori are provided in
the following subsection, and the last subsection provides
correctness and efficiency arguments.

3.1 Pseudo-Code for Max-Miner
The pseudo-code description of Max-Miner appears in figures 2
through 4. The body (Figure 2) accepts a data-set and (implicitly)
the minimum support specified by the user. The while loop

k
k I

sup I()

{}

1 2

1,2

1,2,3

1,2,3,4

1,3

1,3,4

1,4 2,3

2,3,4

2,4

3

3,4

4

1,2,4

g
h g()

t g()
h g()

1{ }
h g() 1{ }= t g() 2 3 4, ,{ }=

g
h g() h g() t g()∪

h g() i{ }∪ i t g()∈
h g()
h g() t g()∪ h g() t g()∪

g

g
h g() t g()∪ h g() i{ }∪

i t g()∈ h g() i{ }∪
i

implements a breadth-first search of the set-enumeration tree that
maintains every frequent itemset encountered so long as it is
potentially maximal. The function Gen-Initial-Groups (Figure 3)
performs the initial scan over the data-set to identify the item
domain and seed the search at the second level of the tree.
Superset-frequency based pruning is performed by only expanding
the sub-nodes of a candidate if is infrequent.
Another instance of superset-frequency pruning is any candidate
group is pruned if is a subset of some already-
know-to-be frequent itemset .

Sub-nodes are generated by Gen-Sub-Nodes in Figure 4. Subset-
infrequency pruning is performed here through the removal of any
tail item from a candidate group if is infrequent.
Gen-Sub-Nodes and Gen-Initial-Groups return the sub-node with
an empty tail as a frequent itemset instead of a candidate group
since its frequency is already known and it has no children in the
search tree.

Figure 2. Max-Miner at its top level.

Figure 3. Generating the initial candidate groups.

Figure 4. Generating sub-nodes.

3.2 Item Ordering Policies
The motivation behind item (re)ordering is to increase the
effectiveness of superset-frequency pruning. Recall that superset-
frequency pruning can be applied when a candidate group is
found such that is frequent. We therefore want to make
it likely that many candidate groups will have this property. A good
heuristic for accomplishing this is to force the most frequent items
to appear in the most candidate groups. This is simply because
items with high frequency are more likely to be part of long
frequent itemsets. Items that appear last in the ordering will appear
in the most candidate groups. For instance, item 4 from Figure 1
appears either in the head or tail of every single node. Item
ordering is therefore used to position the most frequent items last.

Gen-Initial-Groups orders the items in increasing order of
. Items in the tails of candidate groups are re-ordered

prior to sub-node generation in Gen-Sub-Nodes. This function
orders the tail items of a group in increasing order of

. This strategy tunes the frequency heuristic by
having it consider only the subset of transactions relevant to the
given node.

Interestingly, the same item reordering heuristic is used by Slagel
et al. [12] in a set-enumeration algorithm for identifying prime
implicants in CNF propositional logic expressions. The fact that
the same policy works well for both problems is likely due to their
close relationship. Finding prime implicants in CNF expressions is
similar to the problem of generating hypergraph transversals, and
Gunopulos et al. [7] have previously shown that hypergraph
transversal algorithms can be used as a component of an algorithm
for mining maximal frequent itemsets.

3.3 Implementation Details
Max-Miner can use the same data-structures as Apriori (as detailed
in [3]) for efficiently computing itemset supports. The primary
data-structure used by Apriori is the hash tree to index candidate
itemsets. Max-Miner uses the hash tree to index only the head of
each candidate group. For each transaction in the data-set, Max-
Miner uses the hash tree to quickly look up all candidate groups
whose head appears in the transaction. Then, for each candidate
group identified, it traverses down its tail items one by one,
incrementing the support of if tail item is present in
the transaction. If every tail item appears in the transaction, then
the support of is also incremented. We found this
implementation to be substantially faster than individually storing
each itemset within the hash tree. Hash trees are also used by our
implementation of Max-Miner for efficiently identifying the
subsets of frequent itemsets in and .

Our implementation of Max-Miner diverges from the pseudo-code
description in only one way. During the second pass over the data-
set, we use a two-dimensional array for quickly computing the
support of all 2-itemsets as suggested in [3], and do not compute
the support of the long itemsets . We have found that
the long itemsets almost always turn up infrequent at
this stage, so computing their support offers no benefit.

3.4 Correctness and Efficiency Claims
THEOREM (CORRECTNESS): Max-Miner returns all and only the

maximal frequent itemsets in the given data-set.
Proof: The fact that Max-Miner identifies and stores every

maximal frequent itemset follows from the completeness of a
set-enumeration tree search and the fact that branches of the
set-enumeration tree are pruned if and only if they lead to only
infrequent itemsets or non-maximal frequent itemsets. The fact
that Max-Miner returns only those itemsets that are maximal
frequent follows from the operation within the body of Max-
Miner that continuously removes any itemset if a frequent
superset of is known.

Max-Miner, like Apriori, easily handles disk-resident data because
it requires only one transaction at a time in memory. Also like
Apriori, the number of passes over the data made by Max-Miner is
bounded by the length of the longest frequent itemset. For Apriori

g h g() t g()∪

g h g() t g()∪
I

i g h g() i{ }∪

MAX-MINER(Data-set)
;; Returns the set of maximal frequent itemsets present in
Set of Candidate Groups
Set of Itemsets {GEN-INITIAL-GROUPS()}
while is non-empty do

scan to count the support of all candidate groups in
for each such that is frequent do

Set of Candidate Groups
for each such that is infrequent do

remove from any itemset with a proper superset in
remove from any group such that

has a superset in
return

T
T

C { }←
F ← T C,

C
T C

g C∈ h g() t g()∪
F F h g() t g()∪{ }∪←

Cnew { }←
g C∈ h g() t g()∪

F F GEN-SUB-NODES g Cnew,(){ }∪←
C Cnew←

F F
C g h g() t g()∪

F
F

GEN-INITIAL-GROUPS(Data-Set , Set of Candidate Groups)
;; is passed by reference and returns the candidate groups
;; The return value of the function is a frequent 1-itemset
scan to obtain , the set of frequent 1-itemsets
impose an ordering on the items in ;; see section 3.2
for each item in other than the greatest item do

let be a new candidate with
and

return the itemset in containing the greatest item

T C
C

T F1
F1

i F1
g h g() i{ }=

t g() j j follows i in the ordering{ }=
C C g{ }∪←

F1

GEN-SUB-NODES(Candidate Group , Set of Cand. Groups)
;; is passed by reference and returns the sub-nodes of
;; The return value of the function is a frequent itemset
remove any item from if is infrequent
reorder the items in ;; see section 3.2
for each other than the greatest do

let be a new candidate with
and

return where is the greatest item in ,
or if is empty.

g C
C g

i t g() h g() i{ }∪
t g()

i t g()∈
g’ h g’() h g() i{ }∪=

t g’() j j t g() and j follows i in t g()∈{ }=
C C g’{ }∪←

h g() m{ }∪ m t g()
h g() t g()

g
h g() t g()∪

sup i{ }()

g
sup h g() i{ }∪()

g
h g() i{ }∪ i

h g() t g()∪

F C

h g() t g()∪
h g() t g()∪

I
I

this bound is nearly tight. Max-Miner, on the other hand, often
performs substantially fewer database passes, as will be
demonstrated in our evaluation.

THEOREM (EFFICIENCY): Max-Miner makes at most passes
over the data-set, where denotes the length of the longest
frequent itemset.

Proof: We establish the claim by demonstrating why Max-Miner
terminates after pass if it happens to get that far. By the
manner in which Max-Miner generates candidate groups, it is
easy to see that during pass , the head of any candidate group
has exactly items. After pass , for any candidate
group and any of its tail items , will be
infrequent otherwise we would have a frequent itemset longer
than . This implies that the next set of candidate groups will
be empty, in which case the algorithm terminates.

4. Support Lower-Bounding
This section first describes a general technique that can be used to
obtain a lower-bound on the support of an itemset by exploiting the
support information provided by its subsets. The subsequent
subsections describe how this technique is used to improve the
performance of Max-Miner and Apriori.

4.1 Computing Support Lower-Bounds
The idea behind our method of computing a lower-bound on the
support of an itemset is to exploit, as much as possible, the
available support information provided by its subsets. The
following function is useful in this endeavor, as established by the
subsequent theorem. The function computes the number of
transactions that are “dropped” from the supporting set of an
itemset when it is extended with a given item.

DEFINITION: , where is an
item not in itemset .

Figure 5. Illustration of support drop resulting from extending
itemsets and with .

Because , we can get a lower-
bound on the value of given the value of and
an upper-bound on . This fact is exploited by our next
theorem.

THEOREM (SUPPORT LOWER-BOUNDING): is a
lower-bound on the support of itemset when .

Proof: We show that is an upper-bound on
from which the claim follows. The argument is geometric and
is illustrated in Figure 5. The outer square represents the space
of all transactions supporting itemset , and the inner square
the space of all transactions supporting itemset . Because the
space occupied by is entirely contained within the space
occupied by , the set of transactions dropped by extending
itemset with must be a subset of the transactions dropped
by extending itemset with . The fact that is an
upper-bound on is immediate.

The support lower-bounding theorem, as stated, can only be
applied to lower-bound the support of a -itemset if we know the
support of two item subsets. Below we generalize the
theorem to apply when only the supports of smaller subsets are
available.

THEOREM (GENERALIZED SUPPORT LOWER-BOUNDING): The
following equation computes a lower-bound on the support of
itemset where is an itemset disjoint from and

.

Proof: The equation is simply the result of applying the previous
theorem repeatedly for each item in .

4.2 Support Lower-Bounding in Max-Miner
Support lower-bounding can be used by Max-Miner within the
Gen-Sub-Nodes function for additional superset-frequency
pruning (Figure 6). If sub-nodes of a candidate group are generated
while traversing the tail items in item order, a sub-node
generated after will have the property that

. This means if is a
frequent itemset, then any sub-node generated after can lead
only to non-maximal itemsets. Max-Miner thus avoids generating
sub-nodes following any sub-node for which can be
lower-bounded above minsup.

Figure 6. Generating sub-nodes with support lower-bounding.

Figure 7. Computing the support lower-bound.

Figure 7 shows how Max-Miner computes a lower-bound on
 using only support information provided by its

subsets. The function directly applies the generalized support
lower-bounding theorem. Note that the support values required for
this computation are available through the itemsets whose supports
were computed while counting the support of the parent node.

4.3 Support Lower-Bounding in Apriori
Apriori generates candidate itemsets of length whose supports
are computed during database pass . An itemset is made a
candidate if every item subset was found frequent during the
previous database pass. Suppose we are using Apriori to identify
the maximal frequent itemsets. If Apriori can be made to lower-
bound the support of a candidate itemset above or equal to minsup,
then its support does not have to be explicitly counted. However,
the candidate itemset cannot be entirely pruned because it must
remain present for the subsequent candidate generation phase.
Nevertheless, the savings that result from counting the support of
fewer candidate itemsets can be substantial. Also, for a particular
database pass, if ever Apriori can lower-bound the support of all
candidate itemsets above minsup, then it can skip the database pass
altogether.

l 1+
l

l 1+

k
k 1– l 1+

g i h g() i{ }∪

l

drop Is i,() sup Is() sup Is i{ }∪()–= i
Is

I Is i

I i{ }∪

I

Is i{ }∪
Is

sup I i{ }∪() sup I() drop I i,()–=
sup I i{ }∪() sup I()

drop I i,()

sup I() drop Is i,()–
I i{ }∪ Is I⊂

drop Is i,() drop I i,()

Is
I

I
Is

I i
Is i drop Is i,()

drop I i,()

k
k 1–

I T∪ T I
Is I⊂

sup I() drop

i T∈
∑ Is i,()–

i T

g2
g1

h g2() t g2()∪ h g1() t g1()∪⊂ h g1() t g1()∪
g1

g h g() t g()∪

GEN-SUB-NODES(Candidate Group , Set of Cand. Groups)
;; is passed by reference and returns the sub-nodes of
;; The return value of the function is a frequent itemset
remove any item from if is infrequent
reorder the items in
for each in increasing item order do

let be a new candidate with
and

if COMPUTE-LB(,)
then return ;; this itemset is frequent

else
return ;; This case arises only if is empty

g C
C g

i t g() h g() i{ }∪
t g()

i t g()∈
g' h g'() h g() i{ }∪=

t g'() j j t g()∈() and jfollows i in t g(){ }=
g' h g() minsup≥
h g'() t g'()∪

C C g'{ }∪←
h g() t g()

COMPUTE-LB(Candidate Group , Itemset)
;; Returns a lower-bound on the support of
;; Itemset is a proper subset of
Integer
for each do

return

g Is
h g() t g()∪

Is h g()
d 0←

i t g()∈
d d drop Is i,()+←

sup h g()() d–

h g() t g()∪

k
k

k 1–

A support lower-bound can be obtained on a candidate itemset
by plugging into the support lower-bounding theorem any proper
subset of , and any proper subset of . The tightest bounds
will be obtained by using only subsets with one less item. If the
candidate itemset has items, there are then
subset combinations for lower-bounding the support of . Our
lower-bounding enhanced Apriori algorithm, Apriori-LB,
considers every one of these possibilities and compares the best
(largest) bound obtained to minsup.

Apriori-LB does not always have access to the exact support of
every proper subset of a candidate because one or more subsets of
a candidate itemset may have been left uncounted due to previous
lower-bounding efforts. When this is the case, Apriori-LB uses a
new function to bound support drop. The new function, drop-b,
uses support bounds instead of exact support values. Because

 clearly computes an upper-bound on the value of drop
given the same arguments, it can be used in place of drop in the
lower-bounding theorems.

DEFINITION: , where
 is the best-known upper-bound on , and
 is the best-known lower-bound on .

The support of an itemset can be upper-bounded by the support (or
upper-bound on support) of any of its subsets. Apriori-LB sets

 of an uncounted itemset with items to the smallest
of the support upper-bounds or (if computed) support values of
each of its item subsets.

5. Exploiting Additional Constraints
Though the frequent patterns themselves are often of interest to the
end-user, often they need to be digested further before being
presented. Association rules are digested frequent itemsets that can
be useful for prediction. The confidence of an association rule

 is equal to the support of the itemset
 divided by the support of the itemset

. Typically the user is interested in finding only
those association rules with high confidence and support, and these
are produced by searching the entire space of frequent itemsets.
Another database pass is required after finding all maximal
frequent itemsets in order to obtain the supports of all frequent
itemsets for producing association rules. If the frequent itemsets
are long, even if implemented efficiently using specialized data
structures, this step is hopelessly intractable.

Max-Miner can be used to identify many, though not all, high-
confidence association rules during its execution. After counting
the support of a candidate group , Max-Miner has all the
supports necessary to compute the confidence of any association
rule of the form where . Another approach at
incomplete rule-mining could be to use the set of maximal frequent
itemsets to define the space of rules searched by a randomized
algorithm.

Though incomplete techniques at association rule mining may
sometimes be sufficient, completeness is more desirable. We
believe that incorporating additional constraints into the search for
frequent patterns is the only way to achieve completeness on
complex data. Association rule confidence is a constraint that
Bayardo [5] uses to prune some itemsets from consideration. Other
constraints that have been used during the search for patterns
include item constraints [15] and information-theoretic constraints
[13]. Interestingness constraints thus far applied only during post-
processing (e.g. [6]) might also be exploitable during search to
improve efficiency.

Max-Miner provides a framework in which additional constraints
can often be easily integrated into the search. Consider as an
example the problem of finding only the longest frequent itemsets.
This constraint is quite powerful because data sets with long
frequent itemsets usually have very many maximal frequent
itemsets, of which only a small fraction are longest. We have
implemented a version of Max-Miner that exploits this constraint
called Max-Miner-LO (“Longest Only”). It determines the

cardinality of the longest itemset in the set of frequent itemsets
 after each database pass. Any frequent itemsets in that are

shorter than are then pruned, as are any candidate groups in
such that .

6. Evaluation
We selected data-sets from several domains for evaluating the
performance of Max-Miner, all but one of them being publicly
accessible through the web. The data-set that is not publicly
available was provided by a retailer. This data-set contains records
listing all of the items purchased by a customer over a period of
time. We produced another of our data-sets from PUMS census
data available at http://augustus.csscr.washington.edu/census/
comp_013.html. Following Brin et al. [6], we discretized
continuous attributes and removed uninformative attributes. We
created another version of the data-set where all items with 80% or
greater support were discarded. The raw data from the web
consists of both housing and person records, but we extracted only
the person records. The remaining data-sets used in our evaluation
were taken from the Irvine Machine Learning Database Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html). We favored
those with categorically-valued attributes, relatively wide record
length, and a substantial number of records. These data-sets
include connect-4, chess, splice, and mushroom. The splice data
set contains DNA data, the mushroom database contains records
describing the characteristics of various mushroom species, and
Connect-4 and chess are compiled from game state information.
Table 1 lists the width and height of each of these data-sets.
Pumsb* is the same data set as pumsb minus all items with 80% or
more support.

The data-set with the longest patterns was pumsb. This data-set
also had the most maximal frequent patterns -- intractably many
even at relatively high levels of support. We thus focus on pumsb*
for evaluating Max-Miner, and use pumsb only to evaluate Max-
Miner-LO. Even though items with 80% or more support are
removed, pumsb* still a challenging data set with long frequent
itemsets. A similar but smaller data-set was used by Brin et al. to
evaluate DIC, though only at supports of 36% and higher. Their
data-set was not available to us at the time of this writing, so we
created pumsb* to use in its place.

All experiments were performed on a lightly loaded 200MHz
Power-PC with 256 megabytes of RAM. The algorithms were
implemented in C++ atop the same optimized hash tree
implementation. Apriori and Apriori-LB were optimized for
finding only maximal frequent itemsets by having them discard
from memory any frequent itemset that was found to be non-
maximal. The Max-Miner algorithm evaluated here uses support
lower-bounding. In subsection 6.3 we describe the effects of
disabling this and other optimizations.

Ic

I Ic Is I

Ic k k 1–() k 2–()
Ic

drop-b

drop-b Is i,() ub-supIs() lb-sup Is i{ }∪()–=
ub-supI() sup I()
lb-sup I() sup I()

ub-supI() I k

k 1–

i1 i2 … ik, , , ic→
i1 i2 … ik, , ,{ }
i1 i2 … ik ic, , , ,{ }

g

h g() ic→ ic t g()∈

l
F F

l g C
h g() t g()∪ l<

Table 1. Width and height of the evaluation data-sets.

Data-set Records Avg. Record Width

chess 3,196 37

connect-4 67,557 43

mushroom 8,124 23

pumsb 49,046 74

pumsb* 49,046 50

retail 213,972 31

splice 3,174 61

Figure 8. CPU time on pumsb*.

Figure 9. CPU time on mushroom.

Figure 10. CPU time on chess.

Figure 11. CPU time on connect-4.

6.1 Max-Miner versus Apriori and Apriori-LB
Figures 8 through 11 compare the performance of Max-Miner,
Apriori-LB, and Apriori on the most difficult of the evaluation
data-sets. While Apriori-LB is performing far better than Apriori
with respect to run-time (note the logarithmically scaled y axes),
because of its space complexity, we were unable to run it at lower
support than Apriori without exceeding the memory of our
machine. At several data points, Max-Miner is over two orders of
magnitude faster than Apriori at identifying maximal frequent
patterns, and an order of magnitude faster than Apriori-LB. Had
we allowed Apriori to perform candidate paging, the speedups at
lower supports would be even more substantial. Even though these
data sets are from distinctly different domains, the performance
trends are all identical. What these data-sets all have in common
are long patterns at relatively high values of support.

Figure 12. CPU time on retail.

Figure 13. CPU time on splice.

The two remaining evaluation data-sets, retail and splice, have
comparatively small patterns at low support levels. Even so, Max-
Miner still outperforms both Apriori and Apriori-LB. We plot only
the performance of Apriori on these data sets, since Apriori-LB
offered no advantages. Apriori-LB appears to be more effective at
tightly lower-bounding support when the patterns are long. Most of
the maximal frequent itemsets in these data sets are of length 2 to
4, and the longest are of length 8 in splice and 6 in retail at the
lowest support values. The superior performance of Max-Miner on
these data-sets arises from considering fewer candidate itemsets
and reduced index overhead resulting from the indexing of
candidate groups using only head items. This suggests that Apriori
should also index candidate itemsets that share a common prefix as
a group rather than individually. We are currently investigating
whether this optimization pays off more generally.

10

100

1000

10000

100000

5101520253035

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori-LB

Apriori

1

10

100

1000

10000

10 7.5 5 2.5 1 0.1

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori-LB

Apriori

10

100

1000

10000

100000

202530354045505560

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori-LB

Apriori

10

100

1000

10000

100000

102030405060708090

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori-LB

Apriori

0

200

400

600

800

1000

1200

1400

0.10.150.20.250.3

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori

0

50

100

150

200

250

300

350

400

450

22.533.544.555.56

CP
U

Ti
me

 (
se

c)

Support (%)

Max-Miner
Apriori

Figure 14. CPU time per maximal frequent itemset.

6.2 Max-Miner Scaling
For every data set at the support levels we looked at, the lower the
support, the more maximal-frequent patterns were found. Figure
14 plots the amount of time spent by Max-Miner per maximal
frequent itemset against the number of maximal frequent itemsets
found during a given run of the algorithm. The support values used
to generate this data are the same ones that appear in the previous
graphs. Max-Miner’s performance per maximal frequent itemset
remains relatively constant as the number of maximal frequent
itemsets increases, even though the size of the longest itemsets
varies significantly. For instance, for the pumsb* data set, the left-
most point arises from a run at 35% support where the longest
frequent itemsets contain 15 items. The right-most point is for a
run at 5% support where the longest frequent itemsets contain 40
items. Even so, the performance per maximal frequent itemset
varies no more than 25%, indicating Max-Miner is scaling roughly
linearly with the number of maximal frequent itemsets.

The chess data-set exhibits the most non-linear increase in
difficulty with the number of maximal frequent itemsets, though
this increase is still relatively subdued (within a factor of 2.5)
considering the large increase in the number of maximal frequent
itemsets and their length. It is possible that the curve for the chess
data-set would begin to decrease had we mined at even lower levels
of support. We were unable to determine this because of the
explosion in the number of maximal frequent itemsets at low
supports -- already there are over half a million maximal frequent
itemsets at a minsup of 20%. The other data-sets all begin to get
easier as the number of maximal frequent patterns increases
beyond some point. This is certainly in part due to the fact that
itemsets with lower support incur less overhead since they are
contained by fewer database transactions. However, as support
decreases, maximal frequent itemsets become longer, which leads
to an increase in storage and indexing overhead.

Figure 15. Number of candidate groups considered per maximal
frequent itemset.

To remove the effect of indexing and support-counting overhead on
runtime scaling, and to demonstrate how Max-Miner scales in its
space consumption, we also compared the number of candidate
groups whose support was counted to the number of maximal
frequent sets identified (Figure 15)1. For every data-set there is a
strong linear relationship. In fact, the number of candidates
considered is always within a small (at most 3.7 on pumsb*)
constant of the number of maximal frequent itemsets.

Figure 16. Database passes performed by Max-Miner compared to
the longest frequent itemset.

Figure 16 plots the number of database passes performed by Max-
Miner against the length of the longest patterns identified during
each run. The worst-case number of passes is represented by the
diagonal. While the number of database passes increases with
pattern length, it is usually far from the worst-case. Though not
illustrated, Apriori-LB was often able to skip one or two database
passes because all candidates were lower-bounded above minsup.
This had a relatively small effect on performance compared to the
amount of reduction in overhead from computing the support of
fewer candidates. The reductions in database passes tended not to
have as dramatic an effect on performance as might be expected
from experiments on small-pattern data because the overhead of
candidate itemset lookup largely exceeded that of data access.

6.3 Effects of Max-Miner Optimizations
Support lower-bounding is a beneficial optimization on the data-
sets with long patterns for Max-Miner as well as Apriori. For
example, after turning off support lower-bounding, Max-Miner’s
performance dropped by approximately four-fold at all levels of
support on the chess data-set due to a four-fold increase in the
number of candidate groups to be counted. On the retail data-set,
the optimization’s effects were negligible. The item-(re)ordering
heuristic was beneficial, usually dramatically so, on every data-set
we looked at. For example, at 80% support on the chess data set,
turning off item ordering (which caused the algorithm to default to
a static lexical item ordering) resulted in an order of magnitude
decrease in performance, with the performance gap widening even
further as support was decreased. The decrease in performance was
due to an increase in candidate groups resulting primarily from less
opportunities for superset-frequency pruning.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

100 1000 10000 100000 1e+06

CP
U

Ti
me

/|
M|

 (

no
rm

al
iz

ed
)

|M|

chess
connect-4

pumsb*
splice

mushroom
retail

0

100000

200000

300000

400000

500000

600000

700000

0 100000 200000 300000 400000 500000 600000

|C
|

|M|

chess
connect-4

pumsb*
splice

mushroom
retail

1 The plot for the connect-4 data-set is difficult to make out because
it lies directly along the lower-left portion of the plot for chess.

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

DB
 p

as
se

s

Length of longest pattern

chess
connect-4

pumsb*
splice

mushroom
retail

Figure 17. Performance of Max-Miner-LO

6.4 Max-Miner-LO
Figure 17 shows the runtime of Max-Miner-LO on the data sets
with the longest frequent itemsets. We chose very low support
values for these runs to illustrate how additional constraints can
make mining feasible even when the number of maximal frequent
itemsets is too large. Note that Max-Miner-LO can mine on the
pumsb data-set without removing items with 80% or more support.
The longest frequent itemsets in pumsb at .1% support contain 72
items. Frequent itemsets were very long even at 10% support
where they contained 61 items. For most of these data points, the
number of longest frequent itemsets was under 300.

6.5 Comparison with Pincer-Search
Because our work was done concurrently, we have thus far only
had the opportunity to perform a preliminary comparison with Lin
and Kedem’s Pincer-Search algorithm [8]. We have run Max-
Miner on the data-set from their evaluation with the longest
frequent itemsets (T20.I15.D100K). Unfortunately, it was not
challenging enough for either algorithm to draw any solid
conclusions. The only clear case of one algorithm appearing
superior over the other is at 8% minsup where Pincer-Search
requires over 20,000 seconds and considers over 150,000 candidate
itemsets. At this same support value Max-Miner requires 125
seconds and considers less than 22,000 candidate itemsets (within
4,894 candidate groups)1.

Pincer-Search uses a candidate itemset generation procedure that
couples Apriori candidate generation with another technique for
generating long candidate itemsets used for superset-frequency
pruning. The long candidate generation procedure is seeded with
one itemset that contains every frequent item. For each infrequent
itemset encountered after a database pass, any long itemset
containing the infrequent itemset is replaced by itemsets that do
not contain the infrequent itemset. The new itemsets are formed by
removing a single item from the original, and keeping only those
itemsets that are not subsets of any other long candidate itemset.
The process is iterated until no long itemset contains any known
infrequent itemset.

After the second database pass, the Pincer-Search long candidate
itemset generation procedure amounts to identifying all the
maximal cliques in a graph where the nodes are the frequent 1-
itemsets and the edges are the frequent 2-itemsets, much as Zaki’s
MaxClique algorithm [16]. Unlike MaxClique, Pincer-Search uses
a top-down instead of bottom-up approach for finding the cliques.
But due to the fact that the problem is NP-hard, any approach at
generating candidates in this manner may be prone to performance
problems when the frequent itemsets (and hence the maximal
cliques) are long.

Though similar in principle, Max-Miner and Pincer-Search are
quite different in their details. We look forward to performing a
more exhaustive comparison and feel it is likely that the algorithms
will prove complementary.

7. Conclusions
We have presented and evaluated the Max-Miner algorithm for
mining maximal frequent itemsets from large databases. Max-
Miner applies several new techniques for reducing the space of
itemsets considered through superset-frequency based pruning.
The result is orders of magnitude in performance improvements
over Apriori-like algorithms when frequent itemsets are long, and
more modest though still substantial improvements when frequent
itemsets are short. Max-Miner is also easily made to incorporate
additional constraints on the set of frequent itemsets identified.
Incorporating these constraints into the search is the only way to
achieve tractable completeness at low supports on complex data-
sets. It is therefore these extensions which we feel warrant the most
future work. In particular, we hope there exists a clean way to
exploit many of the wide variety of interestingness constraints
during the search rather than applying them only in a post-
processing filtering step.

Acknowledgments
I thank Ramakrishnan Srikant, Rakesh Agrawal, Sunita Sarawagi,
and Dimitrios Gunopulos for many helpful suggestions and
comments, Robert Schrag for directing me to the work of Ron
Rymon, and Dao-I Lin for sharing details of the experiments used
to evaluate Pincer-Search.

References
[1] Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining

Association Rules between Sets of Items in Large Databases.
In Proc. of the 1993 ACM-SIGMOD Conf. on Management of
Data, 207-216.

[2] Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.; and
Verkamo, A. I. 1996. Fast Discovery of Association Rules. In
Advances in Knowledge Discovery and Data Mining, AAAI
Press, 307-328.

[3] Agrawal, R., and Srikant, R. 1994. Fast Algorithms for Min-
ing Association Rules. IBM Research Report RJ9839, June
1994, IBM Almaden Research Center, San Jose, CA.

[4] Agrawal, R. and Srikant, R. 1995. Mining Sequential Patterns.
In Proc. of the 11th Int’l Conf. on Data Engineering, 3-14.

[5] Bayardo, R. J. 1997. Brute-Force Mining of High-Confidence
Classification Rules. In Proc. of the Third Int’l Conf. on
Knowledge Discovery and Data Mining, 123-126.

[6] Brin, S.; Motwani, R.; Ullman, J.; and Tsur, S. 1997.
Dynamic Itemset Counting and Implication Rules for Market
Basket Data. In Proc. of the 1997 ACM-SIGMOD Conf. on
Management of Data, 255-264.

[7] Gunopulos, G.; Mannila, H.; and Saluja, S. 1997. Discovering
All Most Specific Sentences by Randomized Algorithms. In
Proc. of the 6th Int’l Conf. on Database Theory, 215-229.

[8] Lin, D.-I and Kedem, Z. M. 1998. Pincer-Search: A New
Algorithm for Discovering the Maximum Frequent Set. In
Proc. of the Sixth European Conf. on Extending Database
Technology, to appear.

[9] Park, J. S.; Chen, M.-S.; and Yu, P. S. 1996. An Effective
Hash Based Algorithm for Mining Association Rules. In
Proc. of the 1995 ACM-SIGMOD Conf. on Management of
Data, 175-186.

[10] Rymon, R. 1992. Search through Systematic Set Enumera-
tion. In Proc. of Third Int’l Conf. on Principles of Knowledge
Representation and Reasoning, 539-550.

[11] Savasere, A.; Omiecinski, E.; and Navathe, S. 1995. An Effi-
cient Algorithm for Mining Association Rules in Large Data-
bases. In Proc. of the 21st Conf. on Very Large Data-Bases,
432-444.

1 Candidate itemset counts for both Pincer-Search and Max-Miner
do not include the 1 and 2-itemsets. Runtimes are not directly
comparable due to differences in hardware and implementation
details.

10

100

1000

10000

0.1110

CP
U

Ti
me

 (
se

c)

Support (%)

chess
connect-4

pumsb
pumsb*

[12] Slagel, J. R.; Chang, C.-L.; and Lee, R. C. T. 1970. A New
Algorithm for Generating Prime Implicants. IEEE Trans. on
Computers, C-19(4):304-310.

[13] Smythe, P. and Goodman, R. M. 1992. An Information Theo-
retic Approach to Rule Induction from Databases. IEEE
Transactions on Knowledge and Data Engineering, 4(4):301-
316.

[14] Srikant, R. and Agrawal, R. 1996. Mining Sequential Pat-
terns: Generalizations and Performance Improvements. In
Proc. of the Fifth Int’l Conf. on Extending Database Technol-
ogy, 3-17.

[15] Srikant, R.; Vu, Q.; and Agrawal, R. 1997. Mining Associa-
tion Rules with Item Constraints. In Proc. of the Third Int’l
Conf. on Knowledge Discovery in Databases and Data Min-
ing, 67-73.

[16] Zaki, M. J.; Parthasarathy, S.; Ogihara, M.; and Li, W. 1997.
New Algorithms for Fast Discovery of Association Rules. In
Proc. of the Third Int’l Conf. on Knowledge Discovery in
Databases and Data Mining, 283-286.

	Efficiently Mining Long Patterns from Databases
	Abstract
	1. Introduction
	1.1 Related Work
	1.2 Overview

	2. Introducing Max-Miner
	3. Formalizing Max-Miner
	3.1 Pseudo-Code for Max-Miner
	3.2 Item Ordering Policies
	3.3 Implementation Details
	3.4 Correctness and Efficiency Claims

	4. Support Lower-Bounding
	4.1 Computing Support Lower-Bounds
	4.2 Support Lower-Bounding in Max-Miner
	4.3 Support Lower-Bounding in Apriori

	5. Exploiting Additional Constraints
	6. Evaluation
	6.1 Max-Miner versus Apriori and Apriori-LB
	6.2 Max-Miner Scaling
	6.3 Effects of Max-Miner Optimizations
	6.4 Max-Miner-LO
	6.5 Comparison with Pincer-Search

	7. Conclusions
	References

