
InfoSleuth: Agent-Based Semantic Integration of Information

in Open and Dynamic Environments

R. J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,

V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid,

M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk

Microelectronics and Computer Technology Corporation (MCC)
3500 West Balcones Center Drive

Austin, Texas 78759

http://www.mcc.com/projects/infosleuth

sleuth@mcc.com

Abstract

The goal of the InfoSleuth project at MCC is to exploit
and synthesize new technologies into a uni�ed system that
retrieves and processes information in an ever-changing net-
work of information sources. InfoSleuth has its roots in the
Carnot project at MCC, which specialized in integrating
heterogeneous information bases. However, recent emerging
technologies such as internetworking and the World Wide
Web have signi�cantly expanded the types, availability, and
volume of data available to an information management
system. Furthermore, in these new environments, there is
no formal control over the registration of new information
sources, and applications tend to be developed without com-
plete knowledge of the resources that will be available when
they are run. Federated database projects such as Carnot
that do static data integration do not scale up and do not
cope well with this ever-changing environment. On the other
hand, recent Web technologies, based on keyword search en-
gines, are scalable but, unlike federated databases, are in-
capable of accessing information based on concepts. In this
experience paper, we describe the architecture, design, and
implementation of a working version of InfoSleuth. We show
how InfoSleuth integrates new technological developments
such as agent technology, domain ontologies, brokerage, and
internet computing, in support of mediated interoperation of
data and services in a dynamic and open environment. We
demonstrate the use of information brokering and domain
ontologies as key elements for scalability.

1 Introduction

Database research in the past has been focused on the rel-
atively static environments of centralized and distributed
enterprise databases. In these environments, information is
centrally managed and the structure of data is consistent.
Typically, the binding of concepts to speci�c sets of data

is known at the time a schema is de�ned and data access
performance can be optimized using pre-computed indices.

The World Wide Web presents us with a di�erent chal-
lenge. Here, there is more information and the information
is spread over a vast geographic area. There is no centralized
management of the information since anyone can publish in-
formation on the Web. Thus, there is minimal structure to
the data and the structure may bear little relationship to
the semantics. Therefore, there can be no static mapping of
concepts to structured data sets, and querying is reduced to
search engines that dynamically locate relevant information
based on keywords.

The InfoSleuth project at MCC [19, 35, 37] is broad-
ening the focus of database research to meet the challenge
presented by the World Wide Web. A broadening of focus
requires a re-thinking of fundamental requirements, a deep
understanding of existing database technology, and a prag-
matic approach to merging key technologies from database
research and research from other computer disciplines. The
InfoSleuth Project is developing technologies that operate
on heterogeneous information sources in an open, dynamic
environment. InfoSleuth views an information source at the
level of its relevant semantic concepts, thus preserving the
autonomy of its data. Information requests to InfoSleuth are
speci�ed generically, independent of the structure, location,
or even existence of the requested information. InfoSleuth
�lters these requests, speci�ed at the semantic level, ex-
ibly matching them to the information resources that are
relevant at the time the request is processed.

InfoSleuth is based on MCC's previously developed Car-
not technology [7, 18, 36], which was successfully used to
integrate heterogeneous information resources. The Car-
not project developed semantic modeling techniques that
enabled the integration of static information resources and
pioneered the use of agents to provide interoperation among
autonomous systems. Carnot, however, was not designed
to operate in a dynamic environment where information
sources change over time, and where new information sources
can be added autonomously and without formal control.

The InfoSleuth project extends the capabilities of the
Carnot technologies into dynamically changing environments,
where the identities of the resources to be used may be un-
known at the time the application is developed. InfoSleuth,
therefore, rigidly observes the autonomy of its resources, and

does not depend on their presence. Information-gathering
tasks are thus de�ned generically, and their results are sensi-
tive to the available resources. InfoSleuth must consequently
provide exible, extensible means to locate information dur-
ing task execution, and must deal with incomplete informa-
tion and partial results.

To achieve this exibility and openness, InfoSleuth inte-
grates the following new technological developments in sup-
porting mediated interoperation of data and services over
information networks:

1. Agent Technology. Specialized agents that represent
the users, the information resources, and the system
itself cooperate to address the information processing
requirements of the users, allowing for easy, dynamic
recon�guration of system capabilities. For instance,
adding a new information source merely implies adding
a new agent and advertising its capabilities. The use
of agent technology provides a high degree of decen-
tralization of capabilities which is the key to system
scalability and extensibility.

2. Domain models (ontologies). Ontologies give a con-
cise, uniform, and declarative description of semantic
information, independent of the underlying syntactic
representation or the conceptual models of informa-
tion bases. Domain models widen the accessibility of
information by allowing the use of multiple ontologies
belonging to diverse user groups.

3. Information Brokerage. Specialized broker agents se-
mantically match information needs (speci�ed in terms
of some ontology) with currently available resources,
so retrieval and update requests can be routed only to
the relevant resources.

4. Internet Computing. Java and Java Applets are used
extensively to provide users and administrators with
system-independent user interfaces, and to enable ubiq-
uitous agents that can be deployed at any source of
information regardless of its location or platform.

In this paper, we present our working prototype version
of InfoSleuth, which integrates the aforementioned technolo-
gies with more classic approaches to querying (SQL) and
schema mapping. We also describe a utilization of Info-
Sleuth in the domain of health care applications.

This paper is organized as follows. The overall architec-
ture is described in section 2. Detailed descriptions of the
agents are given in section 3. Section 4 describes the Info-
Sleuth and the domain ontology design. Brokering and con-
strained information matching is described in section 5. A
data mining application in the health care domain is briey
presented in section 6. Related work is discussed in sec-
tion 7. Finally, section 8 gives the conclusion and future
work.

2 Architecture

2.1 Architectural Overview

InfoSleuth is comprised of a network of cooperating agents
communicating by means of the high-level agent query lan-
guage KQML [11]. Users specify requests and queries over
speci�ed ontologies via applet-based user interfaces. The
dialects of the knowledge representation language KIF [13]
and the database query language SQL are used internally
to represent queries over speci�ed ontologies. The queries

Monitor

User
 Agent

User

Broker
 Agent

User

Ontology
 Agent

User

Analysis
 Agent

Resource
 Agent

Resource
 Agent

JAVA

Netscape

client.mcc.com
server.mcc.com

http
server

DB

DB

http

RMI

KQML

KQML

KQML

LDL++

SQL

Task

Resource
 Agent

WAIS
HTTP

Query Query

http

KQML

KQML

KQML

RMI
Registry

Agent

Planning &
Execution

Agent

Figure 1: The InfoSleuth architecture

are routed by mediation and brokerage agents to specialized
agents for data retrieval from distributed resources, and for
integration and analysis of results. Users interact with this
network of agents via applets running under a Java-capable
Web browser that communicates with a personalized intel-
ligent User Agent.

Agents advertise their services and process requests ei-
ther by making inferences based on local knowledge, by rout-
ing the request to a more appropriate agent, or by decom-
posing the request into a collection of sub-requests and then
routing these requests to the appropriate agents and inte-
grating the results. Decisions about routing of requests are
based on the \InfoSleuth" ontology, a body of metadata that
describes agents' knowledge and their relationships with one
another. Decisions about decomposition of queries are based
on a domain ontology, chosen by the user, that describes the
knowledge about the relationships of the data stored by re-
sources that subscribe to the ontology.

Construction of ontologies for use by InfoSleuth is accom-
plished most easily by the use of the Integrated Management
Tool Suite (IMTS, not discussed in this paper), which pro-
vides a set of graphic user interfaces for that purpose.

Figure 1 shows the overall architecture of InfoSleuth, in
terms of its agents. The functionalities of each of the agents
are briey described below. Detailed descriptions are given
in the following section.

User Agent: constitutes the user's intelligent gateway into
InfoSleuth. It uses knowledge of the system's common do-
main models (ontologies) to assist the user in formulating
queries and in displaying their results.

Ontology Agent: provides an overall knowledge of ontolo-
gies and answers queries about ontologies.

Broker Agent: receives and stores advertisements from
all InfoSleuth agents on their capabilities. Based on this
information, it responds to queries from agents as to where
to route their speci�c requests.

Resource Agent: provides a mapping from the common
ontology to the database schema and language native to its
resource, and executes the requests speci�c to that resource,
including continuous queries and noti�cations. It also adver-
tises the resources' capabilities.

Data Analysis Agent: corresponds to resource agents spe-
cialized for data analysis/mining methods.

Task Execution Agent: coordinates the execution of high-
level information-gathering subtasks (scenarios) necessary
to ful�ll the queries. It uses information supplied by the
Broker Agent to identify the resources that have the re-
quested information, routes requests to the appropriate Re-
source Agents, and reassembles the results.

Monitor Agent: tracks the agent interactions and the task
execution steps. It also provides a visual interface to display
the execution.

2.2 Agent Communication Languages

KQML [11] is a speci�cation of a message format and pro-
tocol for semantic knowledge-sharing between cooperative
agents. Agents communicate via a standard set of KQML
performatives, which specify a set of permissible actions that
can be performed on the recipient agent, including basic
query performatives (\evaluate," \ask-one," \ask-all"), in-
formational performatives (\tell," \untell"), and capability-
de�nition performatives (\advertise," \subscribe," \moni-
tor"). Since KQML is not tied to any one representation
language, it can be used as a \shell" to contain messages
in various languages and knowledge representation formats,
and permit routing by agents which do not necessarily un-
derstand the syntax or semantics of the content message.

The Knowledge Interchange Format, KIF [13], provides
a common communication mechanism for the interchange of
knowledge between widely disparate programs with di�ering
internal knowledge representation schemes. It is human-
readable, with declarative semantics. It can express �rst-
order logic sentences, with some second-order capabilities.
Several translators exist that convert existing knowledge
representation languages to and from KIF. InfoSleuth agents
currently share data via KIF. Typically, an agent converts
queries or data from its internal format into KIF, then wraps
the KIF message in a KQML performative before sending to
the recipient agent.

Both languages have been extended to provide additional
functionalities required by the design of InfoSleuth.

2.3 Agent Interactions

In the following, we demonstrate a scenario of interaction
among the InfoSleuth agents in the context of a simple query
execution:

During system start-up, the Broker Agent initializes its
InfoSleuth ontology, and commences listening for queries
and advertisement information at a well-known address. Each
Agent advertises its address and function to the Broker
Agent using the InfoSleuth ontology.

When a Resource Agent initializes, it sets up its con-
nection to its resource and advertises the components of
ontology(ies) that it understands to the Broker Agent. One
specialized Resource Agent, the Ontology Agent, deals with
the information system's metadata.

A user commences interaction with InfoSleuth by means
of a Web Browser or other Java applet viewer interacting
with her personal User Agent. The user poses a query by
means of the viewer applet. At this point, the User Agent
queries the Broker Agent for the location of an applicable
Execution Agent. The User Agent then issues the query to
that Execution Agent.

On receiving a request, the Execution Agent then queries
the Broker Agent for the location of the Ontology Agent (if
it does not already know it), and queries the Ontology Agent
for the ontology appropriate to the given query. Based on
the ontology for the domain of the query, the Execution
Agent queries the Broker Agent for currently appropriate
Resource Agents. The Broker Agent may return a di�erent
set of Resource Agents if the same query is posted at a
di�erent time, depending on the availability of the resources.

The Execution Agent takes the set of appropriate Re-
source Agents, decomposes the query, and routes it appro-
priately. Each Resource Agent translates the query from
the query domain's global ontology into the resource-speci�c
schema, fetches the results from the resource, and returns
them to the Execution Agent. The Execution Agent re-
assembles the results and returns them to the User Agent,
which then returns the results to the user's Viewer applet
for display.

The above scenario of a simple query execution is cho-
sen for brevity. Other common scenarios of interactions in
InfoSleuth would reect complex queries with multiple-task
plans and data mining queries that require knowledge dis-
covery tasks.

3 Agent Design and Implementation

In this section, we describe the functionality, design ratio-
nale, and implementation of each of the InfoSleuth agents.

3.1 User Agent

The User Agent is the user's intelligent interface to the Info-
Sleuth network. It assists the user in formulating queries
over some common domain models, and in displaying the
results of queries in a manner sensitive to the user's con-
text.

Upon initialization, the User Agent advertises itself to
the broker, so that other agents can �nd it based on its ca-
pabilities. It then obtains information from the ontology
agent about the common ontological models known to the
system. It uses this information to prompt its user in select-
ing an ontology in which a set of queries will be formulated.

After a query is formulated in terms of the selected com-
mon ontology, it is sent to the task execution agent that best
meets the user's needs with respect to the current query con-
text. When the task execution agent has obtained a result,
it engages in a KQML \conversation" with the user agent, in
which the results are incrementally returned and displayed.
The User Agent is persistent and autonomous; storing in-
formation (data and queries) for the user, and maintaining
the user's context between browser sessions.

Implementation. The User Agent is implemented as a
stand-alone Java application. As with the other agents in
the architecture, explicit thread management is used to sup-
port concurrent KQML interactions with other agents, so
that the User Agent does not suspend its activity while wait-
ing for the result of one query to be returned. Currently, the

agents query the task execution agents using KQML with
SQL content.

A user interface is provided via Java applets for query
formulation, ontology manipulation, and data display, which
communicate with the User Agent by means of Java's Re-
mote Method Invocation (RMI). The applets provide a ex-
ible, platform-independent, and context-sensitive user inter-
face, where query formulation can be based on knowledge
of the concepts in the relevant common ontology, the user's
pro�le, and/or application-speci�c knowledge. Various sets
of applets may be invoked based on these di�erent contexts.
The User Agent is capable of saving the queries created via
applets, as well as results of queries. As the complexity
of the InfoSleuth knowledge domain grows, this set of ap-
plets may eventually be maintained as reusable modules in
a warehouse separate from the User Agent.

3.2 Task Execution Agent

The Task Execution Agent coordinates the execution of high-
level information gathering tasks. We use the term \high-
level" to suggest workow-like or data mining and analy-
sis activities. Such high-level tasks can potentially include
global query decomposition and post-processing as sub-tasks
carried out by decomposition sub-agents, where the global
query is couched in terms of a common ontology; and sub-
queries must be generated based on the schemas and capa-
bilities of the various resources known to the system, and
then the results joined.

The Execution Agent is designed to deal with dynamic,
incomplete and uncertain knowledge. We were motivated in
our design by the need to support exibility and extensibility
in dynamic environments. This means that task execution,
including interaction with users via the user agents, should
be sensitive both to the query context and the currently
available information.

The approach we have taken for the Task Execution
Agent is based on the use of declarative task plans, with
asynchronous execution of procedural attachments. Plan
execution is data-driven, and supports exibility in reacting
to unexpected events and handling incomplete information.

The declarative speci�cation of the agent's plan and sub-
task knowledge supports task plan maintenance, as well as
the opportunity for collaborative task execution via the ex-
change of plan fragments. This declarative speci�cation re-
sides in the agent's knowledge base, and consists of several
components, including: (1) Domain-independent informa-
tion about how to execute task plan structures; (2) knowl-
edge of when it is acceptable to invoke a task operator
(including its preconditions) and how to instantiate it; (3)
knowledge of how to execute the operator; (4) a Task Plan
library; and (5) agent state.

The task plans are declarative structures, which can ex-
press partial-orders of plan nodes, as well as simple execu-
tion loops. Plans are currently indexed using information
about the domain of the query and the KQML \conversa-
tional" context for which the task has been invoked.

Task Plan Execution Using Domain-independent Rules.
After an agent's knowledge base has been populated with
operator descriptions and declarative task plans, it uses its
domain-independent task execution knowledge to carry out
the plans. Its knowledge, in the form of rules, supports the
following functionality:

� Multiple plans and/or multiple instantiations of the
same plan may concurrently execute.

� For a given node in a plan, multiple instantiations of
the node may be created.

� Task execution is data-driven: a plan node is not exe-
cuted until its preconditions are met [34].

� Execution of a plan node can be overridden by rules
for unusual situations.

� Reactive selection of operations not in the current ex-
plicit plan can occur based on domain heuristics.

� Information-gathering operators [21, 8], and conditional
operator execution are supported.

Each time a query from the user agent is received, a new
instantiation of the appropriate plan from the plan library is
initialized by the rule-based system. A task execution agent
can concurrently carry out multiple instantiations of one or
more plans, with potentially multiple instantiations of steps
in each plan. The plan execution process is what de�nes the
Task Execution Agent's behavior. The sequences of inter-
actions with other agents are determined by the task plans
the agent executes, and the conversations with a given agent
are determined by the KQML protocols and supported pri-
marily by the procedural attachments to the task operators.
For example, a user agent can request that the results of the
query be returned incrementally.

Example: General Query Task Plan. Executing a general
query task plan causes the Task Execution Agent to carry
out the following steps.

� Advertise to the Broker, using a tell performative, and
wait to receive a reply (done at agent initialization).

� Wait to receive queries from User Agents. These will
typically be encoded as KQML directives, such as ask-
all, standby, or subscribe). The query as well as the
domain context determines the task plan that is in-
stantiated to process the query.

� Parse the query, and decompose it if appropriate1 .
Parsing involves getting an ontological model from the
Ontology Agent; once this model is obtained, it is
cached for future use.

� Construct KIF queries based on the SQL queries' con-
tents, and query the Broker using the KIF queries and
the ask-all performative to �nd relevant resources.

� Query the relevant resource agents speci�ed by the
broker.

� Compose the results.

� Incrementally return the results to the user agent using
a streaming protocol. Using this protocol, the user
agent successively requests additional result tuples.

1Only query union decomposition is performed at the task plan
level. Previous work in the InfoSleuth project has focused on tech-
niques for global query decomposition and post-processing. Work is
currently in progress to port this functionality to the agent architec-
ture while supporting the dynamic nature of resource availability, via
decomposition agents invoked from the task level. See Section 8.3.

Implementation. The Task Execution Agent is implemented
by embedding a CLIPS [32] agent in Java, using Java's \na-
tive method" facility. CLIPS provides the rule-based ex-
ecution framework for the agent, and, as described above,
the declarative speci�cation of plan and operator knowledge.
The Java wrapper supports procedural attachments for the
plan operators, as well as providing the Java KQML commu-
nications packages used by all the agents in the InfoSleuth
system. Thus, all communication with other agents takes
place via procedural operator implementations.

A CLIPS/Java API has been de�ned to send information
from CLIPS to the Java sub-task implementations, and for
each plan operator (in CLIPS) that invokes a Java method,
a new thread is created to carry out the sub-task, param-
eterized via this API. During sub-task execution, new in-
formation (in the form of CLIPS facts and objects) may be
passed back to the CLIPS database, and this is how the Java
sub-task methods communicate their results. The sub-task
execution is asynchronous, and results may be returned at
any time. Because the task execution is data-driven, new
task steps will not be initiated until all the required infor-
mation for those steps are available.

3.3 Broker Agent

The Broker Agent is a semantic \match-making" service
that pairs agents seeking a particular service with agents
that can perform that service. The Broker Agent, there-
fore, is responsible for the scalability of the system as the
number and volume of its information resources grow. The
Broker Agent determines the set of relevant resources that
can perform the requested service. As agents come on line,
they advertise their services to the broker via KQML. The
Broker Agent responds to an agent's request for service with
information about the other agents that have previously ad-
vertised relevant service. Details of the Broker protocols de-
scribing the exchanged information are given in section 5.2.
In e�ect, the Broker Agent is a cache of metadata that op-
timizes access in the agent network. Any individual agent
could perform exactly the same queries on an as-needed ba-
sis. In addition, the existence of the Broker Agent both
reduces the individual agent's need for knowledge about the
structure of the network and decreases the amount of net-
work tra�c required to accomplish an agent's task.

Minimally, an agent must advertise to the Broker its
location, name, and the language it speaks. Additionally,
agents may advertise meta-information and domain con-
straints based on which it makes sense to query a given
agent. The purpose of domain advertising is to allow the
Broker to reason about queries and to rule out those queries
which are known to return null results. For example, if a
Resource Agent advertises that it knows about only those
medical procedures relating to heart surgery, it is inappro-
priate to query it regarding liver resection, and the Broker
would not recommend it to an agent seeking liver resection
data. The ontology used to express advertisements is called
the \InfoSleuth" ontology because the metadata the Broker
Agent is storing is a description of the relationships between
agents.

Implementation. The Broker Agent is written in Java
and the deductive database language LDL++ [38]. It sup-
ports queries from other agents using KQML for the com-
munication layer and KIF for the semantic content (based
on the \InfoSleuth ontology"). The constraint matching
and data storage for the Broker Agent are implemented in

LDL++. The Broker translates the KIF statements into
LDL++ queries and then sends them o� to the LDL server
to be processed. The use of the deductive database allows
the broker to perform rule-based matching of advertisements
to user requests.

3.4 Resource Agent

The purpose of the Resource Agent is to make information
contained in an information source (e.g., database) available
for retrieval and update. It acts as an interface between a lo-
cal data source and other InfoSleuth agents, hiding speci�cs
of the local data organization and representation.

To accomplish this task, a Resource Agent must be able
to announce and update its presence, location, and the de-
scription of its contents to the broker agent. There are three
types of contents information that are of potential interest
to other agents: (1) metadata information, i.e., ontologi-
cal names of all data objects known to the Resource Agent,
(2) values (ranges) of chosen data objects, and (3) the set
of operations allowed on the data. The operations range
from a simple read/update to more complicated data anal-
ysis operations. The advertisement information can be sent
by the Resource Agent to the broker at the start-up time
or extracted from the Resource Agent during the query pro-
cessing stage.

The Resource Agent also needs to answer queries. The
Resource Agent has to translate queries expressed in a com-
mon query language (such as KQML/KIF) into a language
understood by the underlying system. This translation is fa-
cilitated by a mapping between ontology concepts and terms
and the local data concepts and terms, as well as between
the common query language syntax, semantics and opera-
tors, and those of the native language. Once the queries are
translated, the resource agent sends them to the information
source for execution, and translates the answers back into
the format understood by the requesting agent. Addition-
ally, the resource agent and the underlying data source may
group certain operations requested by other agents into an
atomic (local) transaction. Also, the resource agent provides
limited transactional capabilities for (global) multi-resource
transactions.

The capability of a Resource Agent can be enhanced in
many ways. For example, it may be able to keep the query
context and thus allow for retrieval of results in small in-
crements. Handling of event noti�cations (e.g., new data
is inserted, an item is deleted) can be another important
functionality of a Resource Agent.

The components of an example Resource Agent are pre-
sented in Figure 2. The communication module interacts
with the other agents. The language processor translates
a query expressed in terms of global ontology into a query
expressed in terms of the Oracle database schema. It also
translates the results of the query into a form understood
by other agents. Mapping information necessary for this
process is created during the agent installation time as it
requires specialized knowledge of both the local data and
the global ontology. The task of the event detection module
is to monitor the data source for the events of interest and
prepare the noti�cations to be sent to the agents interested
in those events.

The InfoSleuth architecture has a specialized resource
agent, called the ontology agent, which responds to the
queries related to ontologies. It uses the same KQML mes-
sage exchange as other agents, but unlike resource agents
that are associated with the databases, it only interprets

 Oracle
DB

Communication

Mapping
information

Language
processor

Data access
module

Event
detection

module
KQML
messages

Ontology
query

Ontology
reply

Local

query

Local
format reply

-based

based

language/schema

module

Figure 2: An example of a resource agent

KIF queries. This agent is designed to respond to queries
concerning the available list of ontologies, the source of an
ontology and searching the ontologies for concepts.

We are currently researching the possibility of adding in-
ferencing capability to respond to more sophisticated queries.
There is also a need for maintaining di�erent versions of the
same ontology as the agent architecture is scaled up. These
two capabilities become particularly relevant as the number
of served ontologies increases, especially when multiple on-
tologies are integrated for more complex query formulation.

Implementation. The resource agent is written in Java and
provides access to relational databases via JDBC and ODBC
interfaces. We have run it successfully with Oracle and Mi-
crosoft Access and SQL Server databases. The functionality
of the implemented agent covers advertisements about the
data (both metadata information and ranges/values of the
data contained in the database), and processing of queries
expressed in either global ontology terms or local database
schema terms. We implemented three types of query perfor-
matives: ask-one, ask-all and standby, thus giving the other
agents the option of retrieving one reply, all replies or all
replies divided in smaller chunks.

4 Ontologies in the InfoSleuth architecture

The InfoSleuth architecture as discussed in the previous sec-
tion is based on the communication among a community of
agents, cooperating to help the user to �nd and retrieve
the needed information. A critical issue in the communica-
tion among the agents is that of ontological commitments,
i.e. agreement among the various agents on the terms for
specifying agent context and the context of the information
handled by the agents.

An ontology may be de�ned as the speci�cation of a rep-
resentational vocabulary for a shared domain of discourse
which may include de�nitions of classes, relations, functions
and other objects [15]. Ontologies in InfoSleuth are used
to capture the database schema (e.g., relational, object-
oriented, hierarchical), conceptual models (e.g., E-R models,
Object Models, Business Process models) and aspects of the
InfoSleuth agent architecture (e.g., agent con�gurations and
workow speci�cations). The motivations for using ontolo-
gies are two-fold:

1. Capturing and reasoning about information content:
In an open and dynamic environment, the volume of
data available is a critical problem a�ecting the scala-
bility of the system. Ontologies may be used to:

� Determine the relevance of an information source
without accessing the underlying data. This re-
quires the ability to capture and reason with an

intensional declarative description of the informa-
tion source contents. Object-oriented and rela-
tional DBMSs do not support the ability to rea-
son about their schemas. Ontologies speci�ed in
a knowledge representation or logic programming
language (e.g., LDL) can be used to reason about
information content and hence enable determina-
tion of relevance.

� Capture new and di�erent world views in an open
environment as domain models. Wider accessi-
bility of the data is obtained by having multiple
ontologies describe data in the same information
source.

2. Speci�cation of the agent infrastructure: Ontologies
are used to specify the context in which the various
agents operate, i.e., the information manipulated by
the various agents and the relationships between them.
This enables decisions on which agents to route the
various requests to. This information is represented in
the InfoSleuth ontology and represents the world view
of the system as seen by the broker agent. As the func-
tionality of the various agents evolves, it can be easily
incorporated into the ontology.

Thus, ontologies are used to specify both the infrastruc-
ture underlying the agent-based architecture and character-
ize the information content in the underlying data reposito-
ries.

4.1 A Three-layer Model for Representation and Storage
of Ontologies

Rather than choose one universal ontology format, Info-
Sleuth allows multiple formats and representations, repre-
senting each ontology format with an ontology meta-model
which makes it easier to integrate between di�erent ontol-
ogy types. We now discuss an enhancement of the 3-layer
model for representation of ontologies presented in [20]. The
three layers of the model (shown in Figure 3) are: Frame,
Meta-model, and Ontology.

The Frame layer (consisting of Frame, Slot, and Meta-
Model classes) allows creation, population, and querying of
new meta-models. Meta-model layer objects are instances
of frame layer objects, and simply require instantiating the
frame layer classes. Ontology layer objects are instances of
meta-model objects.

The objects in the InfoSleuth ontology are instantiations
of the entity, attribute and relationship objects in the Meta-
model layer. In our architecture, agents need to know about
other entities, called \agents". Each \agent" has an at-
tribute called \name" that is used to identify an agent dur-
ing message interchange. The \type" of an agent is relevant
for determining the class of messages it handles and its gen-
eral functionality.

A key feature of the InfoSleuth ontology is that it is
self-describing. As illustrated in Figure 3, the entity agent
has ontologies associated with it. The entity ontology is an
object in the meta-model layer and the various ontologies
of the system are its instantiations. However in the case
of the InfoSleuth ontology, the instantiation \InfoSleuth" of
the ontology object is also a part of the InfoSleuth ontology.
This is required as the InfoSleuth ontology is the ontology
associated with the broker agent.

Frame
name part Slot

constraint

arity
Frame
Layer

Entity
Relationship

Attribute

attrs

typeDatatype
Ontology

MetaModel
Layer

Agent address Address

host

port

typeAgentTypes

{ BrokerAgent, UserAgent, ... }

ontologyInfoSleuth
Ontology

HealthCare
Ontology

Ontology
Layer

Figure 3: The three-layer ontology model

ontology(o_857456345)
 ontology_name(o_857456345, ‘healthcare’)
 ontology_frame(o_857456345, f_12312444)
 frame(f_12312444)
 frame_name(f_12312444, ‘encounter_drg’)
 slot(s_34556346)
 frame_slot(f_12312444, s_34556346)
 slot_name(s_34556346, ‘patient_age’)
 constraint(c_67457456)
 slot_constraint(s_34556346, c_67457456)

constraint_expression(c_67457456,
 [[gt, ‘patient_age’, 43],[lt, ‘patient_age’, 75]])

(ontology ?o)
 (ontology ?a ?o)
 (name ?o “Healthcare”)
 (frame ?f)
 (frame ?o ?f)
 (name ?f “encounter_drg”)
 (slot ?s)
 (slot ?f ?s)
 (name ?s “patient_age”)
 (constraint ?c)
 (constraint ?s ?c)
 (expression ?c (and (> ?s 43) (< ?s 75)))

Figure 4: Multiple representation of same ontology

4.2 Utilization of Multiple Representations of Ontologies

One of the reasons for representing ontologies is the ability to
reason about them. For this purpose, di�erent agents might
represent them in di�erent languages depending on the type
of inferences to be made. Figure 4 shows an example of the
same piece of ontology represented by the resource agent in
KIF and by the broker agent in LDL. The broker agent uses
this representation to determine whether a resource agent is
relevant for a particular query.

The Broker Agent utilizes a representation of the ontol-
ogy exported by the Resource Agent (shown in Figure 4)
in LDL [38]. The deductive mechanisms of LDL help deter-
mine the consistency of the constraints in the user query and
those exported by the Resource Agent which in turn deter-
mines the relevance of the information managed by Resource
Agent. The Resource Agent, on the other hand, translates
this information into KIF expressions (as shown in Figure 4),
and sends them to the Broker Agent.

5 Brokering in InfoSleuth

One of the valuable new features of the InfoSleuth technol-
ogy is an intelligent brokering system that performs seman-
tic as well as syntactic brokering of resources. Each agent in
the system advertises its capabilities to the Broker Agent.
The advertisements specify the agent's capabilities in terms

of one or more of the ontologies. From the user's perspective,
semantic brokering enables requests to be speci�ed in terms
of the concepts in an ontology, and matches those semantic
concepts to the resources that are currently best suited to
handle those speci�c requests.

5.1 Capabilities Enabled by Semantic Brokering

Semantic brokering helps expand the functionality of Info-
Sleuth in the following ways.

Intelligent Routing. Through the use of brokering, Info-
Sleuth o�ers the ability to route information requests based
on content, through the use of constraint matching on the
ontology a resource claims expertise over. For instance, a
resource may have access to information only about doctors
in Houston and Austin. It would be fruitless to query this
resource about doctors in Dallas and the use of constraints
rules this resource out.

Currently constraint matching is an intersection function
between the user query and the data resource constraints.
If the conjunction of all the user constraints with all the re-
source constraints is satis�able, then the resource contains
data relevant to the user request. We should mention here
that, following \the open world assumption", the Broker
Agent always matches a query with unconstrained, yet rele-
vant data sources, regardless of the constraints imposed by
the query.

Note that the constraints for both the user request and
the resource data pro�les are speci�ed in terms of some com-
mon ontology. It is the use of this common vocabulary that
enables the dynamic matching of requests to applicable re-
sources.

Dynamic Binding of Resources. An InfoSleuth broker ac-
cepts advertisements from new resources and noti�cations
of resource unavailability at any time. Thus, InfoSleuth
is able to keep up with an ever changing set of resources,
which is not easily accomplished in a federated database.
As resources come and go, the broker is made aware of this
through KQML advertisements, and will thus only recom-
mend appropriate resources to the agents doing the query
planning. This means that the same user request may pro-
duce di�erent results at di�erent times, depending on which
resources are available. Also, neither the user nor any agents
acting on his behalf needs to know where or what resources
are available when building a query plan, i.e. the user can
query an open information space.

Scalability. There are several ways in which our approach
to brokering impacts system scalability. First, decisions on
which resources are likely to be relevant to speci�c user re-
quests are made without actually accessing the resource.
This greatly reduces the time and e�ort required to route a
request. Secondly, the ease with which new resources may
be added to the system makes scalability much less of an
issue. To add a resource to the system it need only have a
KQML/KIF interface for advertising its services; then other
agents can make use of them immediately. Thirdly, as the
number of agents in InfoSleuth grows, the di�erent syntactic
and semantic brokering functions can be factored out into
separate agents.

5.2 Broker Protocols

The protocol for the Broker Agent currently supports two
types of requests: advertisements and queries. Each is dis-
cussed in turn.

Advertisement. Advertisement is accomplished by means
of the KQML performative tell. Modi�cation of a service
description is accomplished simply by issuing a new tell per-
formative with appropriate �elds altered to reect the new
state. Repudiation of a service is accomplished by issuing
a tell performative with appropriate �elds nulled out. Con-
straints on the agent's advertised ontology are expressed us-
ing KIF. The Broker currently accepts constraints on �elds
for single values, value ranges, and sets of values. A tell
advertisement of a simple range constraint might look like
that in Figure 5.

Broker Query. Queries to the Broker Agent about the Info-
Sleuth ontology are made by means of a KQML message
that uses the ask-one and ask-all performatives and embeds
a KIF query specifying constraints that should be met by
the agents whose addresses are to be returned. Figure 5 il-
lustrates an example of an ask-all query. The Broker reasons
about these constraints by translating the KIF expressions
into LDL++. Queries on constraints are currently restricted
to expressions on open-ended ranges and set membership.
Logical conjunction of constraints is currently possible; dis-
junction is not yet explicitly supported; however, an agent
can achieve disjunction by issuing separate queries and con-
catenating the results.

A successful reply from the broker will return a list of
tuples, each containing the name and address of the adver-
tised agent, among other information. If the broker does not
�nd an agent matching the request, the returned list will be
empty. The reply to an ask-one query returns the �rst tuple
found to meet the minimal requirements, and the reply to
an ask-all query returns as many tuples as the broker �nds
which satis�es the query. In the future, we will be more
exible in allowing the querying agent to specify the type
of information to be returned beyond a simple name and
address in the aspect �eld of the KQML query. Likewise,
the broker will also return the \best" match to an ask-one,
and a ranked list of recommendations to an ask-all.

The query in Figure 5 represents an execution agent ask-
ing the Broker Agent for Resource Agents that understand
SQL and have information about patients older than 65.
The Broker Agent, based on the previous advertisement,
would send a KQML reply performative indicating the ad-
dress of the resource agent that matches the query.

6 Applications

In this section, we demonstrate the use of InfoSleuth in data
mining applications, and we present a data mining example
from the health care application domain.

6.1 Knowledge Discovery through InfoSleuth

Knowledge discovery in databases has recently received con-
siderable attention due to the proliferation of large databases
whose size prohibits e�ective analysis via traditional means.
Fayyad, Piatetsky-Shapiro, and Smyth [12] describe the pro-
cess of knowledge discovery as one involving �ve phases:
data selection, data preprocessing, data transformation, data

(tell
:sender “resourceagent1”
:receiver “brokeragent”
:ontology “Infosleuth”
:language KIF
:content

(and
(agent ?a)
(name ?a “resourceagent1”)
(address ?addr)
(address ?a ?addr)
(host ?addr “fake.com”)
(port ?addr “5699”)
(protocol ?addr “http”)
(type ?a “ResourceAgent”)
(language ?a SQL)
(ontology ?o)
(ontology ?a ?o)
(name ?o “Healthcare”)
(frame ?f)
(name ?f “encounter_drg”)
(slot ?s)
(slot ?f ?s)
(name ?s “patient_age”)
(constraint ?c)
(constraint ?s ?c)
(expression ?c (and

(> ?s 43)
(< ?s 75)

)
)

)
)

(ask-all
:sender “executionagent1”
:receiver “brokeragent”
:ontology “Infosleuth”
:language KIF
 :aspect (?name ?protocol ?host ?port)
:content

(and
(agent ?a)
(name ?a ?name)
(address ?addr)
(address ?a ?addr)
(host ?addr ?host)
(port ?addr ?port)
(protocol ?addr ?protocol)
(type ?a “ResourceAgent”)
(language ?a SQL)
(ontology ?o)
(ontology ?a ?o)
(name ?o “Healthcare”)
(frame ?f)
(slot ?s)
(slot ?f ?s)
(name ?s “patient_age”)
(constraint ?c)
(constraint ?s ?c)
(expression ?c (> ?s 65))

)
)

Figure 5: A Tell and Ask-All advertisements

analysis, and interpretation and evaluation. While most at-
tention has been devoted to the analysis phase involving
the mining of patterns from appropriately transformed data,
they stress that other phases are also considerably important
for knowledge-discovery systems to be successful in practice.
The InfoSleuth project is experimenting with providing sup-
port for all knowledge discovery phases by tightly integrating
data access, data analysis (mining), and data presentation
tasks.

One di�culty in establishing a close connection between
the data access and data analysis phases of knowledge dis-
covery is a mismatch between how the data is structured
within the individual databases, and how it is conceptual-
ized by the user. This mismatch complicates query speci�-
cation and can lengthen query retrieval time considerably.
The InfoSleuth approach is to specify a common ontology
for a domain, and local mappings from individual database
schemas to the common ontology. These mappings can be
thought of as views of the data that simplify query speci�-
cation for selecting information. Given an appropriate set
of mappings for a particular knowledge discovery task, the
InfoSleuth system provides query support for selecting rele-
vant information. Furthermore, it pre-processes and trans-
forms the underlying database data into records whose at-
tributes consist of concepts from the ontology; thereby mini-
mizing query retrieval time. When knowledge discovery pro-
cesses result in new, general concepts, these concepts can
also be reected in the ontology. In support of the data
analysis phase, InfoSleuth provides generic analysis agents
for performing data summarization [3], classi�cation [9], and
deviation detection [1, 29]. As illustrated in Figure 1, the
execution of both data access and data analysis components
is seamlessly controlled by the task planning and execution
agent.

6.2 A Health care Application

The InfoSleuth project is collaborating with the Health care
Open Systems Trials (HOST) consortium, partially funded
by the U. S. National Institute of Standards and Technology,
to develop advanced information technologies for Health care.

We are applying the InfoSleuth technology to help health
care administrators in determining how to reduce costs and
improve quality of care by providing querying, knowledge
discovery, and workow management capabilities on vast
amounts of data stored in the distributed, heterogeneous
databases of di�erent hospitals and other care providers.

InfoSleuth is well suited to providing querying capabil-
ities across the databases of di�erent hospitals. The use
of a common ontology for the health care domain enables
queries to be speci�ed with respect to the ontology, rather
than to the idiosyncratic schemas associated with each hos-
pital. Adding a new hospital to the system simply entails
adding a new Resource Agent, along with its mapping to the
common ontology. The brokering and query decomposition
capabilities increase the e�ciency of queries by directing lo-
cal queries only to the databases that are likely to contain
the requested information. InfoSleuth ontology-based bro-
kering is the main technology enabling the development of
an e�cient Master Patient Index (MPI).

The goal of knowledge discovery in this application is to
help hospital administrators compare outcomes of treatment
(such as average length of stay and incidence of complica-
tions) across di�erent care providers (such as hospitals and
doctors) for patients with similar risks. Concepts like \pa-
tients with similar risks" and \outcomes of treatment" are
not explicitly represented in the databases or in the ontolo-
gies created for integrating the databases. Therefore, knowl-
edge discovery becomes a 2-step process. The �rst step in-
volves discovering how to map the data in the databases onto
these more abstract concepts and represent them in the on-
tology. The second step involves discovering how to predict
one concept from another, such as predicting the outcomes
of a particular treatment given di�erent patient risk factors
and health care providers. Association rules �nding and de-
viation detection algorithms are used to carry out the �rst
step, and Bayesian statistics techniques are used to carry
out the second step.

7 Related Work

In the SIMS project [4], a model of the application domain
is created using a knowledge representation system to es-
tablish a �xed vocabulary describing objects in the domain,
their attributes, and relationships. For each information
source a model is constructed that indicates the data model
used, query language, network location, and size estimates,
and describes the contents of its �elds in relation to the do-
main model. Queries to SIMS are written in the high-level
uniform language of the domain model. SIMS determines
the relevant information sources by using the knowledge en-
coded in the domain model and the models of the informa-
tion sources. These information sources are determined at
run time based on their availability at that time. The Info-
Sleuth agent-based architecture is an attempt to capture the
dynamic availability/unavailability of information sources in
a Web-based environment.

TSIMMIS [16] is a system for integrating information.
It o�ers a data model and a common query language that
are designed to support the combining of information from
structured and semi-structured sources. The emphasis in
the TSIMMIS system is that of automatic generation of
translators and mediators for accessing and combining in-
formation in heterogeneous data sources. The resulting in-
formation is expressed in an Object Exchange Model. The
Distributed Interoperable Object Model (DIOM) [25] shares
similar goals with the TSIMMIS project. Also, similar func-

tionality can be found in the resource agents in the Info-
Sleuth architecture. Additionally, we are considering ap-
proaches for automatic generation of translators and medi-
ators for resource agents. In InfoSleuth, these are presently
used by the resource agents to mediate between concepts
in a rich domain model and the data stored in a variety of
syntactic representations in the data repositories.

The DISCO project [33] provides support for integrating
unstable data sources in a dynamic environment. DISCO
provides a partial query evaluation scheme that accounts for
source unavailability. Mediation in DISCO is based on the
ODMG-93 standard object model. A collection of modeling
tools are provided to facilitate the wrapping of data sources
into ODMG �rst class objects. To facilitate query mapping
and optimization from ODMG's OQL to the source query
languages, the ODMG model is slightly modi�ed.

The Information Manifold [27] is a system for retrieval
and organization of information from disparate (structured
and unstructured) information sources. The architecture of
Information Manifold is based on a knowledge base con-
taining a rich domain model that enables describing the
properties of the information sources. The user can in-
teract with the system by browsing the information space
(which includes both the knowledge base and the informa-
tion sources). The presence of descriptions of the informa-
tion sources also enables the user to pose high-level queries
based on the content of the information sources. The focus
in the Information Manifold project however is to optimize
the execution of a user query expressed in a high-level lan-
guage which might potentially require access to and com-
bination of content from several information sources [24].
Similar functionality can be found to a limited extent in
the Task Planning and Execution Agent in InfoSleuth. The
focus in InfoSleuth is to model a dynamic web-based envi-
ronment where resource agents may join and leave the sys-
tem dynamically. This information is kept by the broker
agent which enables the task planning agent to reformulate
its plan to access the relevant information sources.

The OBSERVER project [28] represents an approach for
query processing in Global Information Systems. Inten-
sional metadata descriptions organized as domain speci�c
ontologies are used to model and query the information con-
tent in various repositories. OBSERVER helps the user to
observe a semantic conceptual view of a Global Information
System by giving him the ability to browse multiple domain
speci�c ontologies as opposed to individual heterogeneous
repositories. Ontology-based interoperation is achieved by
navigation of the synonym relationships between terms in
the various ontologies. While the present version of the Info-
Sleuth system lacks ontology-based interoperation found in
OBSERVER, it is better able to capture the dynamic nature
of a web-based environment where information sources may
join or leave the system, through its agent-based architec-
ture.

8 Conclusions

8.1 Current Accomplishments

Our current InfoSleuth design is scalable and portable. This
is accomplished through the use of collaborative agents, and
the use of Java as a common agent wrapper. Java provides
the portability that will be required if InfoSleuth agents
need to be deployed dynamically in an unknown environ-
ment. Both User Agents, representing individual users, and
Resource Agents, representing speci�c data resources, are

platform-independent. Furthermore, all GUIs are written
as Java applets, which can be executed from any browser on
any platform.

Internally, multi-threading supports concurrent KQML
dialogs between the agents, and allows subtasks to be exe-
cuted asynchronously. To facilitate communication between
agents, we have also implemented KQML in Java.

Our current InfoSleuth release does the following:

� Dynamically integrates heterogeneous data sources while
maintaining their local autonomy.

� Executes context-sensitive information-gathering tasks
that are capable of dealing with dynamic and uncertain
knowledge of the application domain. This is achieved
through hybrid declarative/procedural task speci�ca-
tions using rule-based systems with Java procedural
attachments.

� Accesses global information exibly. This is achieved
through the use of semantically precise, hierarchically
organized ontologies to describe information and data
resources. Ontological descriptions capture database
schemas (e.g., relational, object-oriented, hierarchical)
and conceptual models (e.g., E{R models, Object Mod-
els, Business Process models). Users query data based
on their ontologies and without regard to the physical
representation or the underlying conceptual model.

In addition to its basic functionality, InfoSleuth also pro-
vides a suite of GUI tools to perform data mining and statis-
tical analysis, for both general and application-speci�c data
evaluation. Also, InfoSleuth provides the Integrated Man-
agement Tool Suite, which provides a complete set of GUI
tools for ontology creation and maintenance.

8.2 Lessons Learned

Our experience thus far with InfoSleuth has been very en-
couraging, and we are continuing to re�ne and expand its
capabilities to meet new needs.

We have faced several issues regarding KQML which we
hope to see addressed. First, the KQML speci�cation makes
seemingly contradictory assumptions regarding the trans-
port layer. On the one hand, KQML is supposedly \neu-
tral" with regard to transport layer, designed to accommo-
date TCP, SMTP, email, etc. But the KQML speci�cation
makes the assumption that KQML performatives delivered
from a single agent to another will arrive in the order in
which they were sent; this is an erroneous assumption for
many transport layers, including email and TCP (where a
single connection is opened and then closed for a single mes-
sage). Since there is no provision at the KQML level for
determining the correct order of messages, we have deviated
signi�cantly from the speci�cation to implement streaming
of large query results.

Secondly, we have frequently found it necessary to imple-
ment various brokering capabilities (advertise, recommend)
at the content-language level rather than at the level of
KQML. For example: the KQML \advertise" performative
speci�es that the content of advertise be another KQML
performative of the form that can be accepted by the ad-
vertiser. The problem is that it is quite often the case in
InfoSleuth that di�erent agents can accept exactly the same
performative, but return di�erent results depending on the
type of service provided by that agent. For instance, con-
sider the following performative:

(ask-all
:sender A
:receiver B
:language SQL
:ontology healthcare
:content "select drg_code from encounter"

)

If this performative is sent to a resource agent, the result
will be the requested data from that single resource. But if
it is sent to an execution agent, the result will be the re-
quested data from all relevant resource agents. In normal
usage, the sender will only want to send this message to
an execution agent, which is capable of doing query decom-
position and result integration. But in KQML, there is no
way for the sender to distinguish the services provided by
the two types of agents based on the advertisement alone.
To compensate for this, we pushed most advertising infor-
mation down into the content-level, reducing advertise and
recommend to simple tell and ask-one/ask-all queries based
on a system-wide InfoSleuth ontology, which represents in-
formation about agents and ontologies. As we add more
advanced features such as subscription, facilitators, active
brokering, etc., we suspect that we will continue to have the
same di�culties.

In general, the KQML speci�cation was ambiguous on
other key points; it was often necessary to go to the KQML
community for guidance on proper usage. As of this writing,
an updated KQML speci�cation including a formal seman-
tics for the language is soon to see print, and is eagerly
awaited [22].

On a more positive note, we have found ODBC and
JDBC to provide true portability that signi�cantly simpli-
�ed our implementation of a generic resource agent. For ex-
ample, even though the resource agent could run on Solaris
and Windows NT platforms, but not on Sun OS (where Java
is not supported), we were still able to access Sun OS Or-
acle databases thanks to ODBC/JDBC. Drivers for JDBC
are not widely available yet for all databases, but availability
is growing rapidly. Also, we could have used more transac-
tional support in ODBC/JDBC. Our early experience with
providing transaction support in InfoSleuth suggests that we
adopt the X/Open XA interface which is currently widely
complied with. To this end, we plan to develop a light-
weight transaction monitor to support the XA interface.

Another experience that we have learned from using Java
is the extent of the achievable code mobility in a system like
InfoSleuth. Currently, only user interface applets will be
accessible from general browsers like Netscape (as soon as
RMI support, which is underway, is completed). This is be-
cause InfoSleuth applets do not use any native calls, just the
way Java is intended to be used. Making InfoSleuth agents
accessible from Internet browsers, however, is not possible
under the heavy and necessary use of network communica-
tion calls and database interface libraries.

8.3 Future Work

The current design of InfoSleuth has been extensively tested,
and successfully used in the health care application domain.
Several extensions are currently being investigated and will
be included in the future release. Areas of extension include
expanding the scope of information that we can examine
from InfoSleuth, and extending the scope of our brokering
capabilities. Also, we plan to extend the functionality of
the current task execution agent to support more complex

tasks. Finally, we plan to expand the functionality of the
user agents

Our vision for expanding the information that can be
deduced and/or examined includes adding new types of re-
source agents, including resource agents for LDL, text index-
ing and retrieval, ontologies, and possibly images. Also at
the level of queryable information, we intend to add di�er-
ent data analysis agents, each of which can analyze a set of
data in speci�c ways. These agents will be used in support
of the data mining capability.

We intend to enhance the brokering capabilities, splitting
the broker agent into a family of cooperating, specialized
brokers. We will factor out the syntactic brokering capabil-
ities into a separate type of broker agent, possibly imple-
menting it as an ORB interface using CORBA [30]. Seman-
tic brokering will be available at di�erent levels|for exam-
ple, local to the site, local to the enterprise, and between
enterprises. Semantic brokering may include additional in-
formation on contents, and additional semantic information
such as quality and cost of information. Furthermore, we
plan to implement the capability for the broker to discover
information, rather than relying on its being told everything
explicitly through advertisement.

We are in the process of splitting the current execution
agent into two separate agents, a query decomposition agent
and a task execution agent. The task execution agent will
develop execution plans based on user requirements using
generative planning and plan retrieval utilizing case-based
reasoning techniques [17, 31]. The task execution agent
may interleave planing with information-gathering subtasks
[2, 34, 23] and repair plans when unexpected situations are
encountered [10, 26]. Plans will be speci�ed as (transac-
tional) workows that can be executed by InfoSleuth. It
will supervise the execution of the resulting workows, in-
cluding managing the transactions it generates. The query
decomposition agent will be called by the task execution
agent when it has a query over multiple resource agents. It
will optimize and decompose queries over multiple resource
agents, reassemble the results, and return them to the task
execution agent.

We also plan to extend our event monitoring capabili-
ties signi�cantly. This includes developing a complex event
speci�cation language and the ability to decompose such
events into simpler events on single resource agents. Com-
plex events may include such properties as changes in the
result of a query, and sets of simple events and/or operations
that happen in a particular sequence or timing.

There are several important directions in which the user
agent will be extended. These include developing queryable
user pro�les containing the user's preferences and a history
of his sessions. We also plan to develop applets that aid
in visual query speci�cation [6], re�nement, and pruning.
The user agent will have additional support for security and
collaboration.

Acknowledgments

The authors would like to thank M. Huhns, N. Jacobs, B.
Perry, and M. Singh for their participation in the early de-
sign and implementation of InfoSleuth.

References

[1] A. Arning, R. Agrawal, and P. Raghavan, \A linear
method for deviation detection in large databases", In

KDD-96 Proceedings, Second International Conference
on Knowledge Discovery and Data Mining, 1996.

[2] J. Ambros-Ingerson and S. Steel, \Integrating plan-
ning, execution and monitoring", In Proceedings of the
Seventh National Conference on Arti�cial Intelligence
(AAAI-88), pages 83-88, St. Paul, MN, 1988.

[3] R. Agrawal, T. Imielinski, and A. Swami, \Mining asso-
ciation rules between sets of items in large databases",
In Proceedings of the ACM SIGMOD Conference on
Management of Data, 207-216, 1993.

[4] Y. Arens, C. A. Knoblock and W. Shen, \Query Refor-
mulation for Dynamic Information Integration", Jour-
nal of Intelligent Information Systems, 1996.

[5] R. Agrawal, and K. Shim, \Developing tightly-coupled
data mining applications on a relational database sys-
tem". In KDD-96 Proceedings, Second International
Conference on Knowledge Discovery and Data Mining,
1996.

[6] C. Ahlberg, C. Williamson, and B. Shneiderman, \Dy-
namic queries for information exploration: An imple-
mentation and evaluation". In B. Shneiderman, editor,
Sparks of Innovation in Human-Computer Interaction.
Ablex Publishing, 1993.

[7] \http://www.mcc.com/projects/carnot"

[8] O. Etzioni and D. Weld, \A softbot-based interface to
the internet". Communications of the ACM, 37(7):72-
76, July 1994.

[9] U. M. Fayyad, S. G. Djorgovski, and N. Weir, \Au-
tomating the analysis and cataloging of sky surveys",
In Usama M. Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth and Ramasamy Uthurusamy (Editors)
Advances in Knowledge Discovery and Data Mining,
AAAI Press/The MIT Press Menlo Park, California,
1995.

[10] J. Firby, \Task networks for controlling continuous pro-
cesses", In Proceedings of the Second International
Conference on AI Planning Systems, 1994.

[11] T. Finin, R. Fritzson, D. McKay, R. McEntire, \KQML
as an Agent Communication Lan guage", Proceedings
of the Third International Conference on Information
and Knowledge Management, ACM Press, November
1994.

[12] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, \From
Data Mining to Knowledge Discovery: An Overview",
In U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth
(Editors) Advances in Knowledge Discovery and Data
Mining, AAAI Press: Menlo Park, CA, 1-34, 1995.

[13] M. R. Genesereth, R. E. Fikes, et al. \Knowledge In-
terchange Format Version 3 Reference Manual", Logic-
92-1, Stanford University Logic Group, 1992.

[14] M. Genesereth and S. Ketchpel, \Software Agents",
Communications of the ACM, Vol. 37, No. 7, pp. 48-53,
July, 1994.

[15] T. Gruber, \A translation approach to portable on-
tology speci�cations", in Knowledge Acquisition, An
International Journal of Knowledge Acquisition for
Knowledge-Based Systems. 5(2), June 1993.

[16] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J. Ullman and J. Widom, \The
TSIMMIS Approach to Mediation: Data Models and
Languages", In Proceedings of the NGITS (Next Gen-
eration Information Technologies and Systems), June
1995.

[17] K. J. Hammond, \CHEF: A model of case-based plan-
ning". In Proceedings of the Fifth National Conference
on Arti�cial Intelligence (AAAI-86), Philadelphia, PA,
1986.

[18] M. Huhns, N. Jacobs, T. Ksiezyk, W. M. Shen, M.
Singh and P. Canata, \Enterprise Information Model-
ing and Model Integration in Carnot", Enterprise In-
tegration Modeling: Proceedings of the First Interna-
tional Conference, The MIT Press, 1992.

[19] \http://www.mcc.com/projects/infosleuth"

[20] N. Jacobs and R. Shea, \The Role of Java in InfoSleuth:
Agent-based Exploitation of Heterogeneous Informa-
tion Resources", IntraNet96 Java Developers Confer-
ence, April, 1996.

[21] C. Knoblock, \Planning, executing, sensing, and re-
planning for information gathering", In Proceedings of
the Fourteenth International Joint Conference on Arti-
�cial Intelligence, 1995.

[22] Y. Labrou, \Semantics for an Agent Communication
Language", Ph.D. Dissertation, CSEE department,
University of Maryland, Baltimore County, September
1996.

[23] J.Lee, M.Huber, E.Durfee, and P.Kenny, \UM-PRS:
An implementation of the procedural reasoning sys-
tem for multirobot applications", In Proceeding of the
AIAA/NASA Conference on Intelligent Robotics in
Field, Factory Service and Space, pages 842-859, 1994.

[24] A. Levy, A. Rajaraman and J. Ordille, \Querying Het-
erogeneous Information Sources Using Source Descrip-
tions", In Proceedings of the 22nd VLDB Conference,
September 1996.

[25] L. Liu and C. Pu, \The Distributed Interoperable Ob-
ject Model and its Application to Large{Scale Interop-
erable Database Systems", Fourth International Con-
ference on Information and Knowledge Management,
1995.

[26] J. E. Laird, D. J. Pearson, R. M. Jones, and R. E. Wray
III, \Dynamic knowledge integration during plan execu-
tion", In Proceedings of the AAAI-96 Fall Symposium
on Plan Execution: Problems and Issues, 1996.

[27] A. Levy, D. Srivastava and T. Kirk, \Data Model
and Query Evaluation in Global Information Sys-
tems", Journal of Intelligent Information Systems 5(2),
September 1995.

[28] E. Mena, V. Kashyap, A. Sheth and A. Illarramendi,
\OBSERVER: An approach for query processing in
global information systems based on interoperation
across pre-existing ontologies", In Proceedings of the
First IFCIS International Conference on Cooperative
Information Systems (CoopIS 96), June 1996.

[29] C. J. Matheus, G. Piatetsky-Shapiro, and D. McNeill,
\Selecting and reporting what is interesting", In Us-
ama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth and Ramasamy Uthurusamy (Editors) Advances
in Knowledge Discovery and Data Mining, AAAI
Press/The MIT Press Menlo Park, California, 1996.

[30] Object Management Group. \CORBA: The Common
Object Request Broker: Architecture and Speci�ca-
tion", Release 2.0, July 1995.

[31] M. V. Nagendra Prasad, Victor. R. Lesser, and S. Lan-
der, \Reasoning and retrieval in distributed case bases",
Technical Report 95-27, UMASS, 1995.

[32] G. Riley, \CLIPS: An Expert System Building Tool",
Proceedings of the Technology 2001 Conference, San
Jose, CA, December 1991.

[33] , A. Tomasic, L. Raschid, and P. Valduriez, \Scaling
Heterogeneous Distributed Databases and the Design of
DISCO", Proceedings of the 16th International Confer-
ence on Distributed Computing Systems, Hong Kong,
1995.

[34] M. Williamson, K. Decker, and K. Sycara, \Uni-
�ed information and control ow in hierarchical task
networks", Technical report, The Robotics Institute,
CMU, 1996.

[35] D. Woelk, M. Huhns and C. Tomlinson. \InfoSleuth
Agents: The Next Generation of Active Objects", Ob-
ject Magazine, July/August, 1995.

[36] D. Woelk, P. Cannata, M. Huhns, N. Jacobs, T.
Ksiezyk, R. Lavender, G. Merdith, K. Ong, W. Shen,
M. Singh, and C. Tomlinson, \Carnot Prototype", in
Object-Oriented Multidatabase Systems, O. Bukhres
and A. Elmagarmid (editors), 1996.

[37] D. Woelk and C. Tomlinson, \The InfoSleuth Project:
Intelligent Search Management via Semantic Agents",
Second International World Wide Web Conference, Oc-
tober, 1994.

[38] C. Zaniolo, \The Logical Data Language (LDL): An
Integrated Approach to Logic and Databases", MCC
Technical Report STP-LD-328-91, 1991.

