Fast Algorithms for Finding Extremal Sets

Roberto J. Bayardo
bayardo@alum.mit.edu
Google, Inc.

Abstract

Identifying the extremal (minimal and maximal) sets from a
collection of sets is an important subproblem in the areas
of data-mining and satisfiability checking. For example,
extremal set finding algorithms are used in the context
of mining maximal frequent itemsets, and for simplifying
large propositional satisfiability instances derived from real
world tasks such as circuit routing and verification. In
this paper, we describe two new algorithms for the task
and detail their performance on real and synthetic data.
Each algorithm leverages an entirely different principle —
one primarily exploits set cardinality constraints, the other
lexicographic constraints. Despite the inherent difficulty
of this problem (the best known worst-case bounds are
nearly quadratic), we show that both these algorithms
provide excellent performance in practice, and can identify
all extremal sets from multi-gigabyte itemset data using only
a single processor core. Both algorithms are concise and can
be implemented in no more than a few hundred lines of code.
Our reference C+4 implementations are open source and

available for download.!

1 Introduction

The problem of finding extremal sets in a collection
of sets is to identify all sets in the collection that are
maximal or minimal with respect to set containment.
Prior to their application in data-mining, algorithms
for maximal set finding were motivated by work in the
area of propositional logic [9]. Today, maximal set
finding algorithms are regularly applied in practice in
the process of simplifying large satisfiability problem
instances from real world domains in order to solve
them more efficiently [4]. In the area of data-mining,
maximal set finding algorithms are used to produce
condensed representations of all frequent itemsets [7],
which are useful patterns for generating association
rules. Maximal frequent itemsets can also serve as
features for classification and clustering tasks [12].
Despite the broad applicability of extremal set
finding algorithms and several theoretical insights into
the problem [9] [8] [14] [15], algorithms used in practice
are relatively primitive, and suffer from scalability issues
when the number of sets and/or the average number
of elements per set grows. For example, the maximal
set finding approach used in the SateLite satisfiability

Thttp://code.google.com /p/google-extremal-sets,/

Biswanath Panda
bpanda@google.com
Google, Inc.

instance simplifier employs a hashing optimization that
limits sets to only a few (64 or less) items, and uses
an index structure that doubles the amount of memory
required. Maximal frequent itemset mining algorithms
do not identify maximal sets within the original data,
but instead within the set of frequent itemsets derived
from the data. These sets, by virtue of applying
a minimum support constraint, are in general much
smaller in size and alphabet than sets from the original
data. Still, early work on maximal frequent itemset
mining [2] found that the time required to eliminate
non-maximal itemsets from the final result was a large
fraction of the entire mining time. More recent maximal
frequent itemset mining methods integrate maximality
enforcement during mining for better performance [5],
and in fact any maximal frequent itemset miner can find
maximal itemsets when configured to use a minimum
support of 1. But, as we later demonstrate, this
approach is too inefficient.

The poor performance of finding extremal itemsets
in massive datasets is not entirely surprising given that
it is easy to prove that the above-noted algorithms used
in practice are quadratic in the worst case. The best
known worst-case bounds for the problem are in fact
not much better: O(m?/log(m)) where m is the total
number of items in the dataset) [8] [15]. Obtaining effi-
cient algorithms on large datasets therefore requires we
exploit not only the best available algorithmic concepts,
but also heuristics and principled implementation tech-
niques. Such techniques include index based optimiza-
tions to alleviate primary bottlenecks, and structuring
the program flow and data layout in order to maximize
both spatial and temporal locality.

In this paper we specifically address the problem of
finding extremal sets in large datasets with a variety of
input characteristics. We describe two new algorithms
for the problem that effectively leverage both theoretical
insights and practical implementation techniques. The
first algorithm exploits set cardinality constraints and
itemset indexing techniques similar to those recently
proposed for the problem of similarity joins [3] [13].
The second algorithm exploits the lexicographic prop-
erty first noted in the early theoretical work of Pritchard

[9], and a space-efficient indexing strategy for optimizing
the most time-intensive seeks into the input data. Both
algorithms exploit the frequency distribution of items,
use only straightforward data structures, and can be ap-
plied to datasets that are too large to fit into primary
memory. Experiments on real and synthetic datasets
demonstrate their scalability. For example, using only
a single processor core on a consumer desktop machine,
we show that both algorithms require only a few minutes
to identify the maximal sets of friends in an 8 gigabyte,
20 million node graph representing friendship relation-
ships within a production social network.

2 Preliminaries

2.1 Terminology An itemset is a finite set of items,
which may represent arbitrary entities such as grocery
products purchased together, the friends of a person in
a social network, the literals in a clause from proposi-
tional logic, or the terms that appear in a document.
For most real applications, item frequencies have non-
uniform distributions, with power law distributions be-
ing the most common. Almost all recent practical algo-
rithms involving itemsets (be they for finding extremal
sets, similarity joins, frequent itemset mining, an so on)
exploit this non-uniform distribution for efficiency pur-
poses. Our algorithms are no different; thus we assume
up front that the alphabet of items from a given col-
lection of itemsets has been ordered in increasing order
of item frequency within the collection. For example,
in the case of market basket analysis, the items which
are purchased the least will appear earliest in this or-
dering. From this point on, we will treat itemsets as
ordered sets, with items ordered according to this fre-
quency based policy.

A dataset is a finite ordered multiset of itemsets,
which we use to represent the itemset collection pro-
vided as input to the problem. As is the case with the
items themselves, the ordering imposed upon itemsets
is also critical for obtaining efficient algorithms. But
unlike the item ordering which is exploited entirely for
efficiency reasons, the itemset ordering is also generally
exploited to guarantee correctness. Another difference
in this case is the precise itemset ordering strategy to
use is not as obvious. An algorithm of Pritchard [9], for
example, exploits both itemset cardinality and lexico-
graphic properties of itemsets. Pritchard did not eval-
uate the algorithm empirically, and in our experience,
exploiting both properties together did not yield signifi-
cant benefits in practice. Thus, we instead propose two
separate algorithms, one that exploits a purely itemset
cardinality based ordering and the other a purely lexi-
cographic one.

An itemset Sy is mazimal (resp. minimal) among

a collection of itemsets if there is no other itemset Ss
in the collection such that S; C S (resp. Sy C S7).
An itemset is extremal within a collection if it is either
minimal or maximal. Algorithms for finding all maximal
sets in a collection are in general easily modified to find
all minimal itemsets (and vice versa) [8], so without loss
of generality, from this point onward we focus on finding
maximal sets only.

2.2 Notation Recall that the dataset accepted as
input by each algorithm is an ordered multiset of
itemsets D. We use standard index and range notation
to denote specific items, elements, and subsets of the
input data. Specifically:

e D[i] denotes the i*" itemset from D according to
the itemset ordering policy.

e DJi][j] denotes the j** item in itemset D[i] accord-
ing to the item ordering policy.

e D[i : j] denotes the ordered multiset of itemsets
{D[k] | k = i...j}, in that order. Similarly,
DJi][j : k] denotes the itemset {D[i][l] |l =7...k}.

In our algorithm descriptions, whenever we spec-
ify an iteration over all elements of an ordered set, we
assume elements are produced in either the order ex-
plicitly stated or otherwise in the order implied by the
ordering policy of the particular ordered set type.

3 Finding Extremal Sets Using Cardinality
Constraints

The first algorithm we propose, like the subsumption
detection scheme of SateLite [4], exploits the cardinality
constraint, which is the simple and obvious fact that an
itemset cannot properly contain (subsume) any itemset
that is equal to or greater than it in size. While
this seems like a relatively weak constraint on the
surface, we shall demonstrate it can still be exploited
much more extensively than in previous approaches.
In order to better leverage the cardinality constraint,
the itemset ordering required by this first algorithm is
that itemsets appear in increasing cardinality. In other
words, smallest itemsets always come before larger ones.
The algorithm makes no additional requirements on the
itemset ordering, though we note that lexicographically
ordering the itemsets within in each block of equally
sized itemsets supports further optimization in theory
[8].

Another key to the algorithm is in leveraging an
indexing strategy to narrow the space of itemsets a
particular itemset must be compared against. The
SateLite approach uses an indexing strategy whereby

an index (called an occurs list) is associated with each
item and contains pointers to all itemsets that contain
the item. Thus, if there are n itemsets and m items in all
of D(m=7>,_, , |D[i|), the index consists of exactly
m pointers. The index is constructed up front before
subsumption checking begins. In contrast, our approach
constructs and leverages the index during the maximal
set finding phase, which means the index only reaches its
full size after performing significant work. Furthermore,
for each itemset S, we index it in the occurs list of
only its very first item S[1]. The total index size
therefore consists of at most n pointers, which is much
smaller than m, particularly when itemsets are large.
Small indexes generally allow for better performance
since there is less information to scan and better spatial
locality.

Pseudocode for this algorithm, which we refer to as
AMS-Card, appears in Algorithm 1. There are several
important structures maintained by the algorithm:

e O is the occurs index, and consists of one ordered
multiset denoted O[i] for each item 4. It is initially
empty, but each itemset processed by the outer loop
is eventually added to the end of O[S[1]]. In other
words, we index each itemset by its least frequently
occurring item shortly after it is first encountered.
By virtue of the fact that itemsets are added to the
index in the same order as they are encountered, we
have the invariant that itemsets in each O[i] appear
in smallest to largest order.

e B is the current block of same-length itemsets that
have been recently encountered and remain to be
indexed. An invariant for B is that all itemsets
within it are of the same cardinality.

e The value ¢ is the cardinality of the itemsets
currently being added to B.

3.1 Description and Correctness Argument
The high level operation of the algorithm is straight-
forward, as are the arguments supporting its correct-
ness. We scan the dataset in itemset order. For each
itemset, we iterate over each its items. For each item,
we scan over the list of itemsets within the occurs list
for that item. For each such itemset, we do an explicit
subsumption check between it and the current itemset.
After processing all itemsets of a given size ¢, they are
added to the occurs index as already described and the
procedure continues. It is straightforward to see that if
an itemset DI[i| properly subsumes an itemset S, then
S will have been indexed by the time the loop on line
2 encounters D[i]. Furthermore, because by definition
of subsumption S must contain every item in S’, we are

Algorithm 1 GetMaximalltemsetsCard(Dataset D):
Find all maximal sets from a dataset D by using the
cardinality constraint.

Require: D ordered by increasing itemset cardinality
1: B—0;¢c«— 0,00
2: for alli e {1,...,n} do

3: for all j €{1,...,|D[i|} do

4: for all S € O[D[i][j]] not marked as subsumed
do

5 if |S| > |D[i]| —j + 1 then

6: break

7: if D[i] properly subsumes S then

8: mark S as subsumed

9: if |D[i]| > ¢ then

10: Add each itemset S € B to the end of O[S[1]]

11: B« (; ¢ — |D[i]|

12 B+« BU{DI[i}
13: return all elements of D not marked as subsumed

guaranteed to encounter S’ when scanning at least one
of the occurs lists while S is D[i]. It follows that the al-
gorithm successfully marks each subsumed itemset, and
only the maximal itemsets are returned.

Note there are a few more tricks employed by our
version of this basic scheme. First, on line 5, note that
we have an “early exit” condition for the inner loop
that triggers when the set of items from the current
itemset that remain to be tried (D[i][j + 1 : |D[i]]]) is
smaller than the current itemset S. This early exit is
possible is because within the inner loop, any itemset
that has not already been encountered does not contain
any of the items in DJ[i][1 : j — 1]. Therefore, for any
itemset S not already found to be subsumed, if it is
subsumed by D][i], it must be entirely subsumed by the
subset D[é][j : |D[é¢]|]]. This inequality check simply
enforces the tighter cardinality constraint that results
from this fact, and the fact that all itemsets following
S in the occurs list are at least as large as S. This
fact can also be exploited by the explicit subsumption
check performed on line 7. In our implementation, we
explicitly check whether itemset S is subsumed by D]i]
by initiating a binary search in D[i] at item D[i][j + 1],
since we know that S[1] = DJi][j]. We perform one
binary search for each remaining item of S, returning
as soon as we fail to find an item. Each binary search
starts from the point at which previous search left off.
As the difference in size between DJi] and S grows, this
binary searching is asymptotically faster than a linear
scan based intersection.

3.2 Complexity and Performance

Algorithm 2 GetMaximalltemsetsLex(Dataset D):
Find all maximal itemsets in D by using the lexico-
graphic constraint.

Require: Itemsets in D are in lexicographic order

1: ;; Mark proper prefizes as subsumed

2: S — Din]

3: forallie {n—1,...,1} do

4. if |D[i]| < |S|] and S[1 : |D[i]|] = DJi] then

5: ;; D3] is a proper prefiz of S

6 mark DJi] as subsumed

7 else

8 S «— D[Z}

9: ;; Mark remaining non-maximal itemsets as sub-
sumed

10: for allie€ {1,...,n—1} do

11: if D[] is not marked subsumed then

12: MarkSubsumed(D[i 4+ 1 : n], DJ[i], 1, 0)

13: return all elements of D not marked as subsumed

3.2.1 Runtime It is straightforward to come up with
problem instances where AMS-Card is quadratic in the
number of itemsets, yet as we will show in the experi-
mental results section, it still performs remarkably well
on large datasets. Note that the algorithm uses tight
loops, small index structures, and a single scan over the
input data, all providing good locality properties. Most
importantly, however, by positioning infrequent items
up front in each itemset, the algorithm takes little time
to quickly try the initial items from a given set, which
lets it better exploit the cardinality constraint at line 5.
Not entirely surprisingly, performance of the algorithm
tends towards quadratic as the item frequency distribu-
tion becomes more uniform, as confirmed through our
experiments on synthetic data.

3.2.2 Memory Usage The memory requirement of
the algorithm is minimal: it is linear in the size of the
input data with a small constant. We use only standard
array data structures for representing the index and the
itemsets. Each itemset is stored in memory exactly
once, and a single pointer per itemset gets stored on the
index. Because of the simple single-scan nature of the
algorithm, it is straightforward to modify the algorithm
to operate on datasets that are larger than available
RAM by partitioning the dataset and performing one
file-based dataset scan per partition [3].

4 Finding Extremal Sets Using Lexicographic
Constraints

When itemsets are ordered lexicographically, an itemset
Sy precedes Sy if and only if (1) Sy is a proper prefix
of S ({1,2,3} vs. {1,2,3,4}) or (2) for the smallest j

Subroutine 3 MarkSubsumed(DI[b : €], S, j, d): Mark
proper subsets of S within D[b : e] as subsumed.
The parameter j specifies we need only consider items
S[j, S]], and d indicates the size of the prefix shared by
all I € D[b: e] and subsumed by S[1,j — 1].
Require: D[b: €] is ordered lexicographically
Require: VS’ € D[b:¢], S’[1:d] = D[b][1 : d
Require: S[1,j — 1] D D[b][1 : d]
Require: VS’ € Db:¢], |S'| > d
Require: VS’ € Db : e], S'[k] > S[j] for all k s.t.
d<k<l9.

1: while b < e do

2: if S[j] < D[b][d + 1] then

3 j « NextItem(S, j, D[b][d + 1])

4 if j is null then

5: return
6: if S[j] = D[b][d + 1] then
7
8
9

e/ — NextEndRange(DI[b : €], S[j], d)
if |S| > d+1 then
while b < ¢’ and |D[b]| =d+ 1 do

10: mark D[b] as subsumed

11: b—b+1

12: if j+1<|S|and b < ¢ then

13: MarkSubsumed(D[b: €'], S, j+ 1, d+ 1)
14: b—¢€

15: else

16: b — NextBeginRange(DIb : €], S[j], d)

for which S1[j] # S2[j], item S;[j] precedes Sz2[j] in the
item ordering ({1,2,4} vs. {1,3,4} where j = 2). We
denote the fact that an item i; precedes another item
15 according to the item ordering in the standard way:
i1 < ig. Pritchard [9] proved that for an itemset S;
to properly subsume another itemset S5, then either So
is a proper prefix of Sy, or Ss must lexicographically
follow S7. This section describes how we leverage this
lezicographic subsumption property for finding maximal
itemsets.

4.1 Description and Correctness Argument
The high level operation of our second approach for
finding maximal itemsets, which we refer to as AMS-
Lexz, is formally described in Algorithm 2 and Subrou-
tine 3. The top level function first performs a single scan
of the data in reverse lexicographic order to remove all
cases of subsumption due to prefix containment. Next,
it performs a forward scan, and for each itemset it en-
counters, it invokes the MarkSubsumed subroutine to
mark all proper subsets that follow it in the ordering as
subsumed. If MarkSubsumed satisfies its specification,
then the correctness of the top level procedure follows
directly from the lexicographic subsumption property.

The MarkSubsumed subroutine is invoked recur-
sively, and its input arguments must satisfy several pre-
conditions. The first and most straightforward one is
that the range of the input dataset it considers is itself
in lexicographic order. More interestingly, it requires
that all itemsets in the given dataset range share the
same length-d prefix, and that all items in this prefix
belong to the itemset S[1 : j — 1]. Finally, it requires
that all itemsets in the given range have at least one
more item than those in the shared length d prefix, and
that all of those extra items do not come before item
S[j] in the item ordering. Note that all of these pre-
conditions trivially hold for the top level call made by
AMS-Lex, since S[1,0] is empty, the length-0 prefix is
empty, and the range consists of all itemsets following
S in the lexicographic ordering.

Correctness of the MarkSubsumed procedure will
be argued inductively. At any given point during
the algorithm, note that with any narrowing of the
input range, as long as the range is non-empty, the
preconditions remain invariant. The procedure works
by iteratively narrowing the front of the range until
it is empty. Correctness follows as long as we show
that the range is narrowed only to exclude portions of
the range in which all properly subsumed itemsets are
already known to have been identified.

Recall that according to the preconditions, S[j] <
DIb][d + 1]. By virtue of the lexicographic ordering,
no subset containing S[j] can subsume itemsets in
Db : e] if S[j] is strictly less than D[b][d + 1]. The
NextItem procedure therefore searches within S from
item j onwards until it finds the first item S[j'] such
that j/ > j and S[j'] > S[j]. The value of j is the
updated to reflect this value. If there is no such item
in S, then clearly S cannot subsume any itemsets in
the range, and the procedure returns immediately (base
case).

Consider now the case where NextItem returns a
value j such that S[j] = D[b][d + 1] (line 6). In this
case, it follows from our preconditions that any item-
sets subsumed by S[1, j] must reside at the very begin-
ning of the range. We can therefore find these itemsets
by simply advancing the beginning of the range b until
they have all been identified and marked. Consider next
the NextEndRange function. This function returns the
largest value ¢’ for which D[e'][d + 1] = S[j]. If the
preconditions were satisfied on input, it is straightfor-
ward to show that the preconditions hold for parameters
Dilb: €], S,j+1, and d+1. We can therefore recursively
invoke the procedure to mark all proper subsets of S in
range [b : €'] (inductive step), and narrow the current
range in which to continue searching to [e’ : e].

The only remaining case to consider is when S[j] >

DIb][d + 1] after invoking NextItem (line 16). In this
case, we have that item D[b][d+ 1] is not contained in S,
and hence D[b] cannot be subsumed by S. Furthermore
any itemset following D[b] that shares its d + 1-length
prefix also cannot be subsumed by S. The NextBegin-
Range function identifies the earliest point &' at which
DIv'][d+1] differs from D[b][d+1], and the current range
is safely narrowed to this new begin point.

4.2 Complexity and Performance

4.2.1 Runtime Performance of the algorithm in
practice once again depends critically on the item
ordering, and also the implementations of the low
level searching routines NextItem, NextEndRange, and
NextBeginRange. Note that each time these methods
are invoked, we restrict the search to a particular range
of the input data and always try to narrow the search-
able range as the algorithm progresses. Each compar-
ison can be implemented by comparing only a single
item from each itemset with the item provided as an
argument, so comparison operations are extremely fast.
Because the infrequent items appear early in the item-
sets, the ranges typically become narrow very early on
in the search. The standard implementation technique
for searches along ordered data is binary search since
it is logarithmic in the number of elements in the worst
case. Unfortunately even binary search can be relatively
slow in practice when the range to search is large due to
poor spatial locality. In our implementation of NextEn-
dRange and NextBeginRange, we therefore leverage an
index structure for the case where d = 0. When d = 0,
the initial range consists of the entire dataset following
itemset S, which can be huge. The index structure we
use simply maps each item ¢ to the first itemset in D
that starts with item . When d = 0, NextBeginRange
can therefore find the appropriate starting point b with-
out any searching, as can NextEndRange assuming for
a given item ¢ we know the item j that follows it in
the ordering. We therefore resort to binary search only
when d = 1 or greater. And again, these ranges are typ-
ically dramatically smaller than the initial range due to
the frequency based item ordering, which results in fast
binary search.

Because MarkSubsumed monotonically decreases
the size of the range it is searching in, it is easy to
see that it is linear in the number of input itemsets.
Combined with the fact that it is invoked for each
itemset in D, we easily derive a quadratic worst case
asymptotic runtime bound in the number of itemsets.
If we quantify runtime in terms of the total number of
items m in D instead of the number of itemsets, then it
is possible to show that runtime is O(m?/log(m)) using

a straightforward adaption of the Pritchard’s analysis
[8].

4.2.2 Memory Usage AMS-Lex has memory usage
characteristics similar to AMS-Card. The prefix re-
moval step requires only the current itemset and the po-
tentially prefix-subsuming itemset remain in main mem-
ory. The second scan requires the entire dataset range
being considered by RemoveSubsumes to be memory
resident. However, it is once again possible to break the
input dataset into chunks and perform multiple scans
should the dataset exceed available memory. The index
structure we use for range narrowing in AMS-Lex is ex-
tremely compact, and requires space that scales only
with the size of the item alphabet.

5 Experiments

5.1 Algorithms We implemented both AMS-Card
and AMS-Lex in C++ for empirical evaluation. The
implementations we tested are the very same ones
available in our open source release of the code. These
implementations are in C++ and consist of only of a
few hundred lines of code each. Both implementations
support specifying a limited memory buffer size in
which to operate in order to avoid thrashing. Should
the dataset size exceed the available buffer space, the
algorithms appropriately partition the input data, and
thus can efficiently handle even datasets that are larger
than available memory.

We also implemented an algorithm we call AMS-
SAT that identifies all maximal itemsets using the
strategy employed by SateLite [4]. Recall that the
SateLite approach indexes every item of every itemset in
the input. This algorithm is also provided in our open
source release. Unlike AMS-Card and AMS-Lex, this
algorithm does not require any specific sort order of the
input. However, as we later demonstrate, the itemset
ordering can have a big impact on runtime performance.

All runtimes we report are wall-clock times, and
we do not include runtime required to prepare the data
(e.g. sorting into the required itemset order) since this
overhead was not a large part of the overall runtime.
The machine we used had a recent Intel Xeon 2.5 GHz
multi-core processor, though our implementations take
advantage of only a single core.

5.2 Datasets

5.2.1 Real Data The datasets we used that were
derived from real data are described below.

e DBLP: this dataset is derived from publicly avail-
able data, and was prepared as described in pre-

vious work on similarity joins [1] [13]. It consists
of almost 1 million records, and has 14 items per
itemset on average. It is 50 megabytes in size.

e WebDocs: this dataset is publicly available from
the FIMI itemset mining benchmark repository,
and consists of 1.7 million itemsets representing the
content of pages encountered during a web crawl.?
Total file size is 1.2 gigabytes. The average number
of items per itemset is 265, with the largest itemset
containing 71,472 items.

e PubMed: this dataset is publicly available from the
Irvine Machine Learning Repository, and consists
of 8 million itemsets each representing the signif-
icant terms that appear in a single PubMed ab-
stract. The number of items per itemset is 90 on
average, and the total file size is 2 gigabytes.

e Graph: this dataset is proprietary, and represents
relationships within a 20 million person social net-
work. Each itemset represents a node and contains
the other nodes it connects to. On average there
are 100 items per itemset, though the length distri-
bution was very skewed, and many have size up to
1000. The total file size is 7.4 gigabytes. To prevent
thrashing we limited the buffer size to 4 gigabytes,
which resulted in each of our algorithms having to
perform one extra pass over the input data after
partitioning the data into two pieces.

5.2.2 Synthetic Data We found that each of the
datasets derived from real data had skewed, power-
law like item frequency distributions. In order to test
how the algorithms might perform given a uniform item
frequency distribution, we also implemented a synthetic
dataset generator. The synthetic dataset generator also
allows us to see how the algorithms perform with more
control over input data characteristics, such as the ratio
of maximal to non-maximal sets, and with much larger
itemsets than we happened to find in our real data.

The synthetic data generator requires the following
parameters:

e A value amax defining an alphabet {0...amaz}
from which items are drawn uniformly when gener-
ating an itemset.

e A value maxsize that defines a range
{1...mazsize} from which the size of an itemset
is drawn uniformly before selecting its items.

e A value n saying how many potential maximal
itemsets to generate.

Zhttp://fimi.cs.helsinki.fi/data/webdocs.pdf

e A value s saying how many subsets per potential
maximal itemset to generate.

We generate n potential maximal itemsets using
the distributions defined by amax and mazxsize. For
each itemset S of these n itemsets, we generate s
random subsets. A random subset is generated by first
selecting a size uniformly from the range [1,|S| — 1],
and then drawing that many items uniformly randomly
from S. We use random permutations to ensure true
uniform selection of all items. The n itemsets generated
using the distributions defined by amax and mazsize
need not necessarily be maximal, and hence we call
them potential maximal itemsets. The subsets of a
large potential maximal itemset can subsume a smaller
potential maximal itemset.

For these experiments, except when explicitly
noted, we always run AMS-SAT on the lexicographi-
cally sorted input data, which always resulted in better
performance over cardinality sorted input — typically by
at least a factor of 2.

5.3 Results on Real Data The results on the four
datasets derived from real data appear in the Table
1. While all algorithms trivially handled the DBLP
dataset, differences in performance were more dramatic
on the larger datasets. In general AMS-Lex comfortably
outperformed all others, except on the Graph dataset
where AMS-Card was the fastest by a slight margin. We
believe AMS-Card was superior on this dataset because
it exhibited the most variance in itemset cardinality.

On our machine which had 8GB of main memory,
AMS-SAT could not handle the graph dataset with-
out thrashing, so we report runtimes only for the other
datasets. Because the algorithm performs roughly the
same number of subsumption checks regardless of the
itemset ordering, we originally assumed the itemset or-
dering would not significantly impact performance. It
turned out however that the itemset ordering did have
a big effect, with the lexicographic sort order provid-
ing significantly better performance. The reason for
this improvement is improved spatial locality. Recall
that for each itemset, AMS-SAT scans the index list
associated with its least frequent item in order to iden-
tify candidates. Itemsets which share their least fre-
quent items appear together in the lexicographic order-
ing. Regardless, AMS-Lex always substantially outper-
formed it. However, AMS-SAT on the lexicographically
ordered data outperformed AMS-Card on the PubMed
data. The PubMed data had low variance in the number
of items per itemset, hence the better locality allowed
by the lexicographic ordering was more beneficial than
the more powerful cardinality filtering allowed by AMS-
Card.

5.4 Results on Synthetic Data

5.4.1 Experiment 1 For our first experiment on
synthetic data, we wanted to measure performance as
the number of total itemsets increases while maximum
itemset size and the number of maximal itemsets is
held. The parameters provided to the synthetic data
generator were as follows:

e amaxr = leb
e maxsize = 1000

e n = 10000

e s is varied so that the resulting dataset contains
500k to 2.0 million itemsets.

Results for this experiment appear in Figure 1.
Recall that we use a uniform item frequency distribution
when generating the synthetic data. Even though the
size of itemsets varies in this synthetic data more than
the first three datasets derived from real data, the
performance of AMS-Card still suffers because of the
uniform item distribution. In fact, AMS-Card appears
to be exhibiting quadratic runtime scaling. AMS-
SAT also exhibits quadratic scaling similar to AMS-
Card, but is always slower. While AMS-SAT has the
benefit of better spatial locality due to the lexicographic
itemset order, it must perform many more subsumption
checks than AMS-Card, which exploits the cardinality
constraint more aggressively. Figure 1 does not report
the running time for AMS-SAT on the 2 million point
dataset because its index exhausted main memory,
leading to page faults and a very large running time.
While AMS-Lex also exploits skewed item frequencies,
because it recursively narrows the range that must be
searched, the impact of the uniform distribution is far
less dramatic.

5.4.2 Experiment 2 In our second synthetic data
experiment, we scaled the number of potential maxi-
mal itemsets, while keeping other parameters constant.
Specifically, the parameter settings we used for the syn-
thetic data generator were as follows:

e amar = 1leb
e maxsize = 1000
e 1 was varied

e s is set to keep the dataset size at 1.0 million
itemsets

Results for this experiment appear in Figure 2. Here
the results are somewhat surprising. While the per-
formance of AMS-Lex remains mostly constant as the

Table 1: Runtime performance in seconds of finding all maximal sets on real datasets. Note that we provide
runtimes for AMS-SAT on both lexicographic and cardinality sorted inputs.

Dataset || AMS-Card | AMS-Lex | AMS-SAT(L) | AMS-SAT(C)
DBLP 2 1 3 4
PubMed 487 163 384 1217
WebDocs 81 54 115 316
Graph 217 240 abort abort
80 50
70 \\
40
60 ~4-AMS-Card
3 ~0-AMS-Lex 3 \ R
§ > AMS-SAT § 30 "'AUS-Card
Q) O
2 40 2 -B-AMS-Lex
_E 30 E 20 AMS-SAT
= = —u
a8
20
10
10
0 0
0 05 1 15 2 25 0 2 4 6 8 10 12 14
Dataset size (Millions) Number Of Maximal Itemsets (Thousands)
Figure 1: Runtime on synthetic data when the size Figure 2: Runtime on synthetic data when the number

of the dataset is varied while holding all other data
generation parameters constant.

number of maximal itemsets is increased, AMS-Card
becomes progressively faster, and AMS-SAT becomes
slower. At this point we can only speculate that the rea-
son may have something to do with the order in which
the algorithms scan the itemsets. It is natural to expect
that as the number of maximal itemsets increases, run-
ning time should increase since lesser number of sets are
marked as subsumed, and hence continue to be checked
for subsumption. AMS-Card however scans the dataset
from smallest to largest itemset cardinality. When there
are few maximal itemsets, they are more likely to be
the largest sets in the collection and appear last in the
dataset. AMS-Card would therefore not encounter them
until very late in its execution, and as a result, it would
spend significant effort trying to determine subsump-
tion relationships between non-maximal itemsets. To
confirm this suspicion we ran AMS-SAT on the cardi-
nality sorted input, and indeed its performance scaled
more similarly to that of AMS-Card.

of maximal itemsets varied.

5.4.3 Experiment 3 For our third and final experi-
ment on synthetic data, we explored the effect of vary-
ing itemset size while keeping the number of items and
number of maximal itemsets constant. Data generation
parameters were as follows:

e amax = 1leb
e maxsize was varied from 250 to 2000
e 1= 10000

e s is set to keep the dataset size at 1.0 million
itemsets

Results appear in Figure 3. Again AMS-Lex outper-
forms AMS-Card, though in both cases the algorithms
appear to scale linearly with increasing itemset size. As
expected, the differences between AMS-SAT and AMS-
Card are less significant when the average size of an
itemset is smaller. Figure 3 does not include the run-
ning time for AMS-SAT when the max itemset size is
2000, since at this point its performance degraded dra-
matically due to page faults.

70

60

50 ~-AMS-Card
W-AMS-Lex
40
AMS-SAT

30

Time In Seconds

20

10

0 200

400

Average Itemset Size

600 800 1000 1200

Figure 3: Runtime on synthetic data when the maxi-
mum itemset size is varied.

5.5 Comparison with Maximal Frequent Item-
set Mining Any algorithm for mining maximal fre-
quent itemsets can also produce all maximal itemsets
if its minimum support constraint is set to 1. This ap-
proach, however, is unlikely to be practical except on
small datasets since most such algorithms scale poorly
at low values of support. We confirmed this fact by
running GenMax[5], a state of the art maximal frequent
itemset miner, on the real datasets used in our evalua-
tion. GenMax exhausted available memory and aborted
before completion on all datasets except for DBLP. On
DBLP, it required 67 seconds of runtime, compared to
only 1 second for AMS-Lex.

6 Related Work

As already noted, the works of Pritchard [8] [9] and
Yellin [14] [15] were first to demonstrate the first sub-
quadratic bound for the extremal-sets finding problem.
These works present only algorithm descriptions pri-
marily aimed at demonstrating asymptotic time and
space bounds, and do not evaluate their approaches em-
pirically. Our work borrows some concepts from this
work such as the lexicographic ordering property, but
leverages them in algorithms intended to be simple to
implement and fast in practice. We combined these
concepts with appropriate indexing techniques to re-
lieve the primary bottlenecks, and heuristics to exploit
skewed frequency distributions. Our implementations
were carefully structured so that operations required
at the innermost loops exhibited good locality and low
overhead. Some of these techniques were inspired by re-
cent work in similarity joins [3] [13] but were specifically
tailored to the extremal sets problem in this work.

The only publicly available implementation of an
approach to finding extremal sets we are aware of is
the naive approach used by SateLite [4]. This approach
uses aggressive indexing of all items, resulting in far
more memory usage than our algorithms, and runtime
that is impractical on datasets as large as the ones from
our evaluation. SateLite does employ one optimization
we did not consider that can speed up a pairwise
subsumption test when the two sets are both small.
The idea is to store a 64-bit bloom filter per itemset
with bits set according to the modulo-64 hashes of
the itemset’s items. A fast XOR operation on two
bloom filters can determine subsumption between their
respective itemsets with no false negatives but potential
false positives. Should this efficient test return true, a
subsumption check is then performed directly on the
itemsets themselves in order to eliminate the possibility
of a false positive. Unfortunately, this approach is
not useful for datasets with more than 50 or so items
per itemset on average, since the probability of false
positives approaches 100%. For bloom filters to provide
any runtime improvements, the false positive rate must
be low. Otherwise, the algorithm will not be able to skip
enough explicit itemset subsumption checks to make up
for the extra computational resources required to store
and process the bloom filters. While a small number
of items per itemset on average is common in CNF
satisfiability instances, it is not common in data from
data-mining domains such as market basket analysis,
document analysis, and graph analysis.

Algorithms for finding maximal frequent itemsets
[2] [5] [6] must enforce maximality constraints in a man-
ner similar to extremal set finding algorithms. However,
frequent itemsets must satisfy a minimum support con-
straint which typically implies the itemsets necessarily
have a much smaller alphabet and size than those from
the original data. As a result, these approaches are not
suitable for extremal set finding in general.

Other work in extremal set finding includes Shen’s
[11] which proposes data structures and algorithms for
efficiently maintaining extremal sets under the presence
of dataset updates such as itemset insertions.

7 Conclusion and Future Work

We have presented two new algorithms for efficiently
identifying all extremal sets within a given dataset.
Our algorithms are fast, simple to implement, and
exhibit excellent performance on even very large (multi-
gigabyte) datasets. These algorithms leverage index
structures to reduce algorithm bottlenecks, and item
frequency distributions to heuristically minimize the
search space and improve locality.

Our algorithms employ relatively simple “single

item” indexing strategies in order to improve per-
formance. We also suspect more sophisticated in-
dex structures that consider larger itemset prefixes
could yield additional performance improvements, par-
ticularly when the item frequency distribution is less
skewed. Indeed, Xiao et al. [13] have demonstrated
that more aggressive prefix indexing can be effective for
similarity joins.

While we demonstrated that both algorithms per-
form well, the second algorithm, which leverages the
lexicographic constraint, appears to perform best in
most circumstances. Only on the largest dataset we
looked at, Graph, which also happened to have the
most skewed itemset size distribution, was the cardi-
nality based approach superior. Because the two al-
gorithms leverage entirely different properties, a third
algorithm that leverages both might achieve superior
performance to either one. Unfortunately our initial at-
tempts at combining the approaches have yet to provide
significant performance improvements beyond what we
have reported here. Nevertheless, we suspect opportu-
nities remain in combining the techniques.

Lastly, we have primarily focused in this work on
applying these algorithms to typical data-mining ori-
ented datasets. It is likely however that these techniques
would improve the performance of propositional satisfi-
ability simplification methods as well.

Acknowledgment

We thank Mohammed Zaki for his feedback on this work
and his assistance with GenMax.

References

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set similarity joins. In Proc. of the 32nd Intl Conf. on
Very Large Data Bases, 918-929, 2006.

[2] R. J. Bayardo. Efficiently mining long patterns from
databases. In Proc. of the 1998 ACM-SIGMOD Int’l
Conf. on Management of Data, 85—93, 1998.

[3] R. J. Bayardo, Y. Ma, R. Srikant. Scaling up all-pairs
similarity search. In Proc. of the 16th Int’l Conf. on
World Wide Web, 131-140, 2007.

[4] N. Eén and A. Biere. Effective preprocessing in SAT
through variable and clause elimination. In Proc. of
the Eighth Int’l Conf. on Theory and Applications of
Satisfiability Testing, 2005.

[5] K. Gouda, M. J. Zaki: GenMax: An Efficient Algo-
rithm for Mining Maximal Frequent Itemsets. Data
Mining and Knowledge Discovery, 11(3), 223-242,
2005.

[6] G. Grahne and J. Zhu. High performance mining of
maximal frequent itemsets. In The 6th SIAM Interna-
tional Workshop on High Performance Data Mining,
35-143, 2003.

[7] T. Mielikdinen. Transaction databases, frequent item-
sets, and their condensed representations. In Fourth
International Workshop on Knowledge Discovery in In-
ductive Databases, Lecture Notes in Computer Science,
3933, 139-164, 2006.

[8] P. Pritchard. An old sub-quadratic algorithm for
finding extremal sets. Information Processing Letters,
62(6), 329-334, 1997.

[9] P. Pritchard. Opportunistic algorithms for eliminating

supersets. Acta Informatica, 29, 733-754, 1991.

P. Pritchard. On computing the subset graph of a

collection of sets. Journal of Algorithms, 33(2), 182—

203, 1999.

H. Shen. Fully dynamic algorithms for maintaining

extremal sets in a family of sets. International Journal

of Computer Mathematics, 69(3-4), 203-215, 1998.

Z. Wang, H. Fan, and K. Ramamohanarao. Exploiting

maximal emerging patterns for classification. in Proc.

of the 17th Australian Joint Conference on Artificial

Intelligence, Lecture Notes in Computer Science, 3339,

1062-1068, 2004.

C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient

similarity joins for near duplicate detection. In Proc. of

the 17th Int’l World Wide Web Conference, 131-140,

2008.

D. M. Yellin. Algorithms for subset testing and finding

maximal sets. In Proc. of the 8rd Annual ACM-SIAM

Symposium on Discrete Algorithms, 386-392, 1992.

D. M. Yellin and C. S. Jutla. Finding extremal sets

in less than quadratic time. In Information Processing

Letters, 48(1), 29-34, 1993.

(10]

(11]

(12]

[13]

(14]

(15]

