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Abstract
A common technique for bounding the

runtime required to solve a constraint satisfaction
problem is to exploit the structure of the prob-
lem’s constraint graph [Dechter, 92]. We show
that a simple structure-based technique with a
minimal space requirement, pseudo-tree search
[Freuder & Quinn, 85], is capable of bounding
runtime almost as effectively as the best expo-
nential space-consuming schemes. Specifically, if
we let  denote the number of variables in the
problem,  denote the exponent in the com-
plexity function of the best structure-based tech-
niques, and  denote the exponent from pseudo-
tree search, we show .
The result should allow reductions in the amount
of real-time accessible memory required for pre-
dicting runtime when solving CSP equivalent
problems.

1    Introduction

The constraint satisfaction problem (CSP) is a combinato
search problem whose occurrence in AI and other domain
well documented. Briefly, a CSP consists of a set of va
ables to which values must be assigned without violat
constraints that disallow certain value combinations. In t
general case, the CSP is NP-hard, and worst-case runtim
a CSP algorithm is typically exponential in the number 
variables. Improved bounds are achieved on some probl
by algorithms that exploit problem specific features. A com
mon technique is to exploit the structure of the problem
constraint graph [Dechter, 92]. The constraint graph of
CSP graphically depicts constraint relationships by rep
senting each variable with a vertex and each constraint w
edges connecting the restricted set of variables. In gene
the more sparse the constraint graph, the tighter the boun
runtime. For instance, problems with noncyclic constra
graphs can be solved in time linear in the size of the probl
[Dechter & Pearl, 87; Bayardo & Miranker, 94].
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This paper investigates the extent of a space-ti
trade-off in solving the CSP. It is often assumed that ext
sive use of space is necessary to reduce the potentially
behavior of backtrack search [Seidel, 81]. We show here t
this assumption may be ill-founded. We compare the eff
tiveness of pseudo-tree search [Freuder & Quinn, 85]
polynomial space-consuming technique for solving the CS
to that of the best structure-based schemes. Dec
[Dechter, 92] has demonstrated that the best structure-ba
techniques all have worst-case time and space bounds e
nential in a parameter known as induced width ( ). Wh
the exponent in the runtime complexity function of pseud
tree search (pseudo-tree height, or ) is always greater 
induced width for any particular instance, we show that it
always within a logarithmic factor of induced width despi
its low space requirement. Specifically, we demonstrate t

.

We foresee the result having applications in rea
time AI. Runtime prediction in production systems is som
times accomplished by improving the complexity of the ru
match phase [Barachini, 94]. Tambe and Rosenbloom [19
show that complexity of the production match phase can
improved using structure-based constraint satisfaction te
niques. Our result could allow reductions in the amount
real-time accessible memory required for predicting runtim
in hard real-time systems solving problems equivalent to 
CSP. Such reductions could prove critical in systems ope
ing on large knowledge bases where domain size (the bas
the exponent) is proportional to the amount of knowledge

The paper begins with a more formal definition o
the CSP and constraint graph, and provides a descriptio
backtrack search for solving the CSP. We then review 
concepts of pseudo-tree search and pseudo-tree arra
ments of a constraint graph. The next section presents
definitions of induced graph and relates it to partial k-tree
Finally, we establish the above-mentioned relation betwe
pseudo-tree height and induced width and close with c
cluding remarks. The paper assumes the reader is fam
with elementary graph concepts and terminology [Even, 7
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2    Constraint Satisfaction Problems and Back-
tracking

A constraint satisfaction problem (CSP) is a set of variables
and a set of constraints. Each variable is associated with a
finite value domain, and each constraint consists of a subset
of the problem variables called its scheme and a set of map-
pings of domain values to variables in the scheme. An
assignment is a mapping of values to a subset of the problem
variables where any value mapped to a particular variable
belongs to the domain of the variable. An assignment  sat-
isfies a constraint  with scheme  if  restricted to the
variables in  is a mapping in . A partial solution to a
CSP is an assignment that satisfies every constraint whose
scheme consists entirely of variables mentioned in the
assignment. A solution to a CSP is a partial solution men-
tioning every variable.

The constraint graph of a CSP has a vertex for each
variable and the property that the variables in the scheme of
a constraint are completely connected. This is referred to as
the primal-constraint graph in [Dechter, 92] when there are
constraints with more than two variables in their schemes.
Without loss of generality, we assume problems have con-
nected constraint graphs. If it were otherwise, we could sim-
ply view the disconnected instance as a set of instances, one
for each connected component.

A naive method for solving constraint satisfaction
problems is chronological backtrack. Chronological back-
track maps values to variables along an ordering of the vari-
ables until some constraint is violated by the working
assignment. When a constraint is violated, the variable most
recently to have been assigned a value is assigned another
value from its domain. If ever the values in the domain of a
variable are exhausted, a backtrack takes place to the previ-
ous variable along the ordering. The procedure continues
until either the last variable is successfully assigned a value
(in which case a solution has been found), or until all values
from the domain of the initial variable are exhausted (in
which case no solution exists). If we let  bound the number
of values in any domain and  denote the number of vari-
ables, then chronological backtrack has a runtime complex-
ity of  because a variable can be assigned a value
up to  times.

3    Pseudo-tree Arrangements and Pseudo-tree 
Search

Freuder and Quinn [1985] introduce the concept of a pseudo-
tree arrangement of a graph. A pseudo-tree arrangement of a
graph is a rooted tree with the same set of vertices as the
original graph and the property that adjacent vertices from
the original graph must reside in the same branch of the
rooted tree (hereafter called the pseudo tree). A branch is
simply a path from the root to some leaf. The concept is
illustrated in Figure 1, where a vertex in the rooted tree cor-
responds to the vertex directly above it in the original graph.

The original edges from the graph appear dashed in the
pseudo tree to illustrate that adjacent vertices always appear
within the same branch. Note that while a depth-first search
tree is a pseudo tree, a pseudo-tree is not necessarily a depth-
first search tree. For instance, the pseudo tree appearing in
the figure is not a depth-first search tree.

FIGURE 1. A height-3 pseudo-tree arrangement of a chain 
with 7 vertices.

Pseudo-tree search [Freuder & Quinn, 85] exploits
pseudo-tree arrangements, and has a worst-case complexity
function that is exponential in the height of the pseudo tree
( ). Rather than explain pseudo-tree search in its full detail,
we instead describe how to modify chronological backtrack
so that it exploits pseudo trees in a similar fashion. Given a
pseudo-tree arrangement of the problem’s constraint gra
we order the variables of the problem according to a dep
first traversal of the pseudo tree.1 Now, whenever a back-
track is necessary, instead of backing up to the previous v
able in the ordering, we backtrack to the pseudo-tree pa
of the current variable, possibly skipping over many va
ables in the process. This backtrack policy does not sacri
completeness because, due to the structure of the pse
tree, the assignments made to the skipped variables are 
evant with respect to the current failure. We call this alg
rithm pseudo-tree backtrack.

Given the pseudo-tree arrangement, pseudo-t
backtrack has runtime complexity  since eac
variable can be assigned a value a maximum of  tim
The space requirement of this technique is a mere 
beyond the size of the problem input to maintain doma
value iterators and the variable ordering.

In order for pseudo-tree backtrack to be effective
bounding runtime, it requires a pseudo-tree arrangem
with shallow height. An efficient algorithm for finding the
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1 Note that the variable ordering need not be static since there are 
typically many different depth-first orderings. Dynamic variable 
ordering involves modifying the unassigned portion of the 
ordering during backtrack, and can improve average-case per-
formance [Haralick & Elliot, 80; Frost & Dechter, 94].
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minimum-height pseudo-tree is not known. Though a proof
eludes us, we suspect the problem is NP-hard due to its simi-
larity to various well-known NP-hard problems including
minimizing depth-first search tree height. 

Freuder and Quinn [1985] provide the following
method for heuristically constructing a pseudo-tree arrange-
ment: Find a small set of vertices  whose removal from the
constraint graph disconnects it (such a set is called a cutset).
These vertices will form the first  levels of the tree. The
remaining levels are formed by recursively applying the pro-
cedure to the remaining graph components in order to spawn
branches (one for each component) beginning at level

. It is easy to verify that the resulting structure is
indeed a pseudo-tree arrangement. The pseudo-tree from
Figure 1 can be constructed in this manner by selecting the
middle vertex in each chain at each step to disconnect the
remaining graph.

Depth-first search can also be regarded as a heuris-
tic technique for pseudo-tree arranging a graph. Although,
we have found it unlikely to find an arrangement with small
height even when additional heuristics are applied. For
example, consider an  vertex chain graph. Any depth-first
search tree has height at least , whereas a pseudo-tree
arrangement always exists with height at most 
(e.g. as implied by Figure 1).

4    Induced Width 

Dechter [1992] demonstrates that the best structure-based
algorithms for solving the CSP are exponential--in both time
and space--in a constraint graph parameter called induced
width ( ). The actual exponent in the complexity function
of these schemes, e.g. adaptive consistency [Dechter, 92], is

. The parameter is obtained from the constraint graph
after imposing a variable ordering on which the algorithm
operates. A child of a vertex in a graph with an ordering of
its vertices (an ordered graph) is an adjacent vertex that fol-
lows it in the ordering. A parent is an adjacent vertex that
precedes it. The induced graph of an ordered graph  is an
ordered graph with the same ordered set of vertices as  and
the smallest set of edges to contain the edges of  and
enforce the property that any two vertices sharing a child are
adjacent. We can build the induced graph of  by iteratively
connecting any nonadjacent vertices that share a child.
Finally, the induced width of an ordered graph  is the max-
imum number of parents of any vertex in the induced graph
of .

Figure 2 illustrates the process of creating the
induced graph. The ordering is assumed to be from top to
bottom. Edges added to form the induced graph are dashed.
Note that the graph has an induced width of 3.

FIGURE 2. Constructing the Induced Graph

Like schemes exploiting pseudo trees, the effective-
ness of techniques exponential in induced width depends
upon the quality of the constraint graph arrangement. Mini-
mizing induced width is NP-hard [Arnborg, 85], so heuristic
techniques are typically applied to produce the ordering.

We can always order a graph so that its induced
width is less than the height of any pseudo-tree arrangement.
Given a pseudo-tree arrangement of a graph  with height

, ordering the vertices of  according to a depth-first tra-
versal of the pseudo tree produces an ordered graph with
induced width . This is because when creating the
induced graph from such an ordering, no edge can be added
between vertices in different branches of the pseudo tree.
The number of parents of any vertex in the induced graph is
thus bounded by the number of its pseudo-tree ancestors.

The above establishes that techniques exponential
in induced width can always be made as effective in bound-
ing runtime as techniques exploiting pseudo trees. In fact, for
certain classes of problems, induced width is usually better.
For instance, any noncyclic graph can be ordered to have an
induced width of 1, but pseudo-tree arrangements of chain
graphs must increase at least logarithmically with the num-
ber of vertices.

In the next section, we bound how much more
effective induced width techniques are in the general case.
Before proceeding, we review a useful fact relating induced
width to k-trees. A graph is a k-tree [Beineke & Pippert, 71]
if: 

• the graph has  vertices and is complete (said to be a 
trivial k-tree), or 

• there is a vertex of degree  whose neighborhood 
induces a complete graph, and the graph obtained by 
removing the vertex is a -tree. 

Note that a connected noncyclic graph is a 1-tree. A partial
k-tree is a partial graph of a k-tree. The following is due to
Freuder [1990]:

 THEOREM 4.1: An ordered graph with induced
width  is a partial -tree. 
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5    Relating Pseudo-Tree Height and Induced 
Width

We now show that given an ordered graph, we can construct
a pseudo-tree arrangement of the graph where  is within a
logarithmic factor of . This implies that no matter how
effective we can make induced width techniques solve par-
ticular classes of problems, we can make pseudo-tree search
solve them almost as effectively without the added burden of
an exponential space requirement.

The idea behind our approach is to generalize the
case for 1-trees to that of general graphs by making use of k-
tree embeddings. It is easy to establish that a 1-tree of  ver-
tices can be split into components that contain at most  ver-
tices by removing a single vertex. We can therefore generate
a pseudo-tree arrangement with  of any 1-tree
using the heuristic arrangement method from Section 3. The
idea is to always select for the cutset a vertex whose removal
splits the remaining graph into components whose sizes
(number of vertices) are at most half that of the original.
Since such a vertex always exists, splitting recurses at most

 levels deep, generating a pseudo-tree arrangement
with height at most . 

We now generalize to arbitrary graphs. Consider an
ordered graph  with induced width . We know from
theorem 4.1 that this graph can be embedded into a -tree
with the same number of vertices. We establish how to find
the appropriate vertices for splitting k-trees, thereby allow-
ing us to generalize the previously described algorithm for
pseudo-tree arranging 1-trees.

A clique of size  is said to be adjacent to another
clique of size  if they share  vertices. Define depth-
first search on a non-trivial k-tree to traverse adjacent 
cliques instead of adjacent vertices. Figure 3 illustrates a
depth-first search tree resulting from traversing a 2-tree in
such a manner. We refer to such a depth-first search tree as
the clique tree of the k-tree. While there may be more than
one clique tree depending on where the depth-first search
begins and what tie-breaking rule is applied, any clique tree
is sufficient for the upcoming claims.

Each node of the clique tree corresponds to some
clique in the -tree, and the edges represent their intercon-
nection. We now state two properties of clique trees, leaving
the proofs as exercises. Given a non-trivial k-tree  with 
vertices and a clique tree  of :

•  has exactly  vertices.

• Given a vertex  whose removal from  leaves behind 
connected components of size , the clique represented 
by , when removed from , leaves behind components 
of size at most .

We next use these properties to establish the following
lemma:

LEMMA 5.1: Given a non-trivial -tree  with 
vertices, there exists  vertices in  whose removal
leaves behind connected components of size at most .

Proof: We have already noted that a 1-tree can
always be broken into components of a size at most half that
of the original graph by removing a single vertex. From a
clique tree  of the -tree, we can therefore find a vertex 
whose removal splits  into components of size .
The  vertices in the clique represented by , when
removed from the -tree, must therefore leave behind con-
nected components of size at most . 

FIGURE 3. A 2-tree and a possible clique tree.

This method for breaking apart k-trees allows us to
bound the size of the cutset required for splitting arbitrary
graphs and the size of the resulting components:

COROLLARY 5.2: Given an ordered graph  with
induced width , , there exists  vertices in

 whose removal leaves behind components with size at
most .

Proof: Theorem 4.1 tells us we can embed the
graph into a -tree with the same number of vertices.
Because , the -tree is non-trivial and the claim
thus follows immediately from lemma 5.1. 

We lastly apply the above fact to define a pseudo-
tree arrangement procedure, thereby allowing a bound on
pseudo-tree height.

THEOREM 5.3: Given an ordered graph with
induced width , there exists a pseudo-tree arrangement of
the graph with .

Proof: For , the claim is trivially satisfied
by linearly arranging the vertices. Otherwise, by Corollary
5.2, we can find  vertices whose removal leaves
behind components with less than half the vertices of the
original graph. We can use such a set to form the first 
levels of a pseudo-tree. The resulting components must have
induced width of  or less (they are simply subgraphs of
the original graph). Thus, the remaining variables can be
pseudo-tree arranged by applying the procedure recursively
on each component. A new pseudo-tree branch is thereby
spawned for each remaining component as is done by the
heuristic pseudo-tree arrangement procedure from Section 2.

Now, each stage of the recursion leaves behind
components whose size are at most half that of the previous
graph. Therefore, recursion depth can be bounded by

. Since each level of the recursion adds at most
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 new levels to the tree, the resulting pseudo tree has
height at most . 

Theorem 5.3 tells us we can always make the expo-
nent in the complexity function of pseudo-tree backtrack
within a logarithmic factor of that of the best exponential
space-consuming schemes. Our proofs are constructive and
describe a polynomial time-bounded procedure for accom-
plishing the task. While we did not describe a (polynomial
time) procedure for finding the k-tree embedding, such a
procedure appears in [Freuder, 90].

6    Conclusions

We have demonstrated that while the best structure-based
techniques require exponential space, they are capable of
bounding worst-case performance only slightly better than
pseudo-tree search, a simple polynomial space-bounded
scheme. Attempting to trade space for time is therefore of
limited benefit. Interestingly, we have a similar case with
respect to average case performance as well. For example,
Frost and Dechter [1994] have found that algorithms per-
forming unlimited constraint recording during search
(thereby consuming exponential space) barely outperform
polynomial space-bounded constraint recording algorithms. 

We lastly note the open problem of either (a) find-
ing a polynomial space algorithm that runs in time exponen-
tial in induced width, or (b) proving no such algorithm
exists. Current approaches for achieving the runtime bound
fundamentally require exponential space since they record
high-arity constraints or generate all solutions to certain sub-
problems. On the other hand, proving no such algorithm
exists seems like a  related task. We therefore feel
that solving the problem will be difficult if not impossible.

References
[Arnborg, 85] Arnborg, S., Efficient algorithms for combina-

torial problems on graphs with bounded decomposabil-
ity--a survey, BIT 25, 2-23, 1985.

[Barachini, 94] Barachini, F., Frontiers in run-time predic-
tion for the production-system paradigm, In AI Maga-
zine, 15(3), 47-61, Fall 1994.

[Bayardo & Miranker, 94] Bayardo, R. J. and Miranker, D. 
P., An optimal backtrack algorithm for tree-structured 
constraint satisfaction problems. Artificial Intelligence, 
71, 159-181, 1994.

[Beineke & Pippert, 71] Beineke, L. W. and Pippert, R. E., 
Properties and characterizations of k-trees, Mathematika 
18, 141-151, 1971.

[Dechter, 90] Dechter, R., Enhancement schemes for con-
straint processing: backjumping, learning, and cutset 
decomposition, Artificial Intelligence 41(3), 273-312, 
1990.

[Dechter, 92] Dechter, R., Constraint Networks, Encyclope-
dia of Artificial Intelligence, Second Edition, 276-285, 
1992.

[Dechter & Pearl, 87] Dechter, R. and Pearl, J., Network-
based heuristics for constraint-satisfaction problems, 
Artificial Intelligence 34, 1-38, 1987.

[Dechter & Pearl, 89] Dechter, R. and Pearl, J., Tree cluster-
ing for constraint networks, Artificial Intelligence 38, 
353-366, 1989.

[Even, 79] Even, S., Graph algorithms (Computer Science 
Press, Rockville, MD, 1979).

[Freuder, 82] Freuder, E.C., A sufficient condition for back-
track-free search, J. ACM 29(1), 24-32, 1982.

[Freuder, 90] Freuder, E.C., Complexity of k-tree structured 
constraint satisfaction problems, In Proceedings of AAAI-
90, 4-9, 1990.

[Freuder & Quinn, 85] Freuder, E.C. and Quinn, M.J., Tak-
ing advantage of stable sets of variables in constraint sat-
isfaction problems, In Proceedings of IJCAI-85, 1076-
1078, 1985.

[Frost & Dechter, 94] Frost, D. and Dechter, R., Dead-end 
driven learning, In Proceedings of AAAI-94, 294-300, 
1994.

[Haralick & Elliot, 80] Haralick, R. M., and Elliot, G.L., 
Increasing tree search efficiency for constraint satisfac-
tion problems, Artificial Intelligence 14, 263-313, 1980.

[Seidel, 81] Seidel, R., A new method for solving constraint-
satisfaction problems, In Proceedings of IJCAI-81, Van-
couver, B.C., Canada, Morgan-Kaufmann, San Mateo, 
Calif., 338-341, 1981.

[Tambe & Rosenbloom, 94] Tambe, M. and Rosenbloom, P. 
S., Investigating production system representations for 
non-combinatorial match, Artificial Intelligence 68, 155-
199, 1994. 

w* 1+
w* 1+( ) lg n( ) 1+( )

P NP=


	On the Space-Time Trade-off in Solving Constraint Satisfaction Problems*
	1 Introduction
	2 Constraint Satisfaction Problems and Backtracking
	3 Pseudo-tree Arrangements and Pseudo-tree Search
	4 Induced Width
	5 Relating Pseudo-Tree Height and Induced Width
	6 Conclusions


