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Abstract
Special support for quickly finding the first-few answers of a
query is already appearing in commercial database systems.
This support is useful in active databases, when dealing with
potentially unmanageable query results, and as a declarative
alternative to navigational techniques. In this paper, we dis-
cuss query processing techniques for first-answer queries.
We provide a method for predicting the cost of a first-answer
query plan under an execution model that attempts to reduce
wasted effort in join pipelining. We define new statistics nec-
essary for accurate cost prediction, and discuss techniques
for obtaining the statistics through traditional statistical mea-
sures (e.g. selectivity) and semantic data properties com-
monly specified through modern OODB and relational
schemas. The proposed techniques also apply to all-answer
query processing when optimizing for fast delivery of the ini-
tial query results.

1 Introduction

Traditional methods for query processing, primarily those
based on the relational model, process queries with the goal
of materializing the set of all answer tuples with minimal
cost. Several applications instead require only the first
answer or first-few answers to particular queries, or require
the first answers of a query to be delivered as quickly as
possible. This is evidenced by increasing support for first
answer query optimization in modern relational systems
[11, 16]. First-answer query support is also important in
active databases based on production system models, where
fast match algorithms lazily enumerate answers to a query
one at a time [15]. Object-oriented database systems and
knowledge-representation systems support complex struc-
tures allowing data to be retrieved through navigation as
well as querying. Navigation is often preferable over query-
ing for locating a single object since query engines, usually
geared around set-oriented constructs, inevitably touch
more data than necessary. A declarative query language
with first-answer support can enable more understandable
code than navigation, and potentially faster retrieval due to
cost-based optimization. Finally, there will always be cases
when producing the entire query result is simply too costly.
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Various search engines (including those for the world wide
web) provide functionality for lazily enumerating answers
in case of overly general search criteria. In this domain one
might argue that all-answer query responses may take infi-
nitely long or an input “table” may be a stream with n
known end. Thus only depth first, first solution methods a
applicable.

This paper presents our work on query processing te
niques specifically geared for optimizing and executin
first-answer join queries. The techniques also apply to op
mizing all-answer queries when the goal is to minimi
latency of first-answer delivery instead of overall throug
put. The analysis is independent of any storage model, 
therefore applies should the database be disk resident, m
memory resident, or distributed.

We begin by providing a modified pipelined join algo
rithm that remedies performance problems sometim
exhibited by naive join pipelining. We then present a prob
bilistic technique for predicting query-plan cost under th
modified pipelined join execution model. Though the cos
estimation technique requires database statistics not t
cally maintained by traditional centralized database s
tems, the statistics are derivable from those commo
maintained by distributed query processors. We also sh
how they can often be derived or estimated from selectiv
information and semantic information often specified in th
form of cardinality constraints (such as existence and fu
tional dependencies) in modern relational, object-orient
and knowledge-base systems.

2 Preliminaries

We make several assumptions in order to simplify the p
sentation and limit the scope of our investigation. We d
cuss consequences of loosening the assumptions w
appropriate. First, we assume that queries are tree st
tured. Tree-structured queries are often regarded as the m
common class of queries, and have several properties 
make them easier to process [5, 14]. Next, we concent
on the problem of optimizing and executing multi-join qu
ries, and ignore the project and selection operators for 
moment. We focus on joins because they are common 
they are typically the most costly of the query operato
Lastly, we only consider the problem of determining a si
gle answer to a particular query since the techniques 
easily generalized to finding more answers.
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A join query is a collection of base relations and join
predicates. Base relations consist of distinct data elements
called tuples, and join predicates involve two base relations
and specify which pairs of tuples, one from each base rela-
tion, are compatible. A tuple in one relation is said to join
with a tuple in another relation if the two tuples satisfy all
join predicates involving the two relations. Tuples from
relations that have no predicates between them are said to
join trivially.

Answering a join query involves finding a set of tuples,
one from each base relation, such that each tuple joins with
all the others. A query answer is the tuple formed by com-
bining these tuples into one. A query graph represents each
base relation with a node, and each join predicate with an
edge connecting the nodes corresponding to the predicate
arguments. A query graph is tree-structured if it consists of
a single connected component without any cycles. We will
from here on assume that all query graphs are tree-struc-
tured. Without loss of generality, we further assume that
each join predicate involves a distinct pair of relations. This
implies that given  join predicates, there are exactly 
relations mentioned in the query.

Pipelining of multiple joins is an effective technique for
executing first-answer queries since it can avoid touching
large portions of the base relations. The pipelined join algo-
rithm (Figure 1) requires a join order of the  relations
be specified. According to usual heuristics, we assume the
order is selected so that cross products are avoided. Since
we assume the query graph is tree-structured, this implies
each relation (other than the first) is preceded in the order-
ing by exactly one relation that is connected to it in the
query graph. The pipelined join algorithm advances and
retreats along the join order, filling the pipe with joining
tuples until either an answer is found or none are deter-
mined to exist. The algorithm can be trivially extended to
return all answers instead of a first answer by simply con-
tinuing pipelining instead of halting after an answer is pro-
duced.

An important goal of query optimization is to find a join
order likely to provide good performance. A query plan
thereby specifies the particular ordering used by the pipe-
lined join algorithm. More generally, a query plan would

n n 1+

PIPELINE-JOIN( )

 = 
if  non-empty then

Remove a tuple  from  and let .
if  then return 

goto 2
else

if  then return 

goto 3

R1 R2 … Rn 1+, , ,
i 1=
Ci t t Ri∈ j∀ i< t   tj, ,{ }

Ci
t Ci ti t=

i n 1+= t1 t2 … tn 1+, , ,( )
i i 1+=

i 1= ∅
i i 1–=

1
2
3
4
5
6
7
8
9
10
11

FIGURE 1. Pseudo-code for join pipelining.

n 1+
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also specify the indices and algorithms used to identify the
set of joining tuples at each stage of the pipe.

3 Finding the First Answer by Pipelined Joins

When providing a single answer to a query, DB2 and Oracle
exploit pipelining to its fullest extent by avoiding any
access plan requiring a sort [11, 16]. Through pipelining,
the execution engine can usually avoid touching large seg-
ments of each relation when only one answer is needed, par-
ticularly when relations are indexed on their join columns.
Without pipelining, intermediate results need to be fully
materialized, which requires touching most if not all of the
relation contents.

There is one significant problem with naive join pipelin-
ing which can easily lead to poor performance. Suppose we
are given the query whose query graph appears ordered
along a pipeline in Figure 2. Further, suppose the pipelined
join algorithm reaches the final stage in the pipe, only to
find that there are no tuples that join with the previous tuple
set ( ). In this case, the algorithm will back up to
the previous stage. However, the previous stage had nothing
to do with the failure at the final stage, since the only predi-
cate incident upon the final relation connects it to the first
relation in the pipe. The result is the algorithm performs
unnecessary work before eventually backing up to the first
relation where the situation can potentially be remedied.
The amount of unnecessary work performed is exponential
in the number of stages between the failure stage and the
stage at which the failure can be remedied, with the expo-
nent equal to the number of joining tuples identified at each
stage. The common “star query” is particularly prone to th
pathology since its query graph consists of a center n
connecting to several nodes of degree one.

A solution to the problem is relatively straightforward
instead of backing up according to the join order, back 
according to the rooted tree implied by the choice of initial
relation and the structure of the query graph (Figure 
Given a dead end in the pipeline, we thereby immediat
back up to the stage that is filled with the tuple responsi
for the failure. Whenever the pipeline backs up to a pre
ous stage  that has more than one child, not only do 

direction of pipeline flow

1 2 3 4 5

FIGURE 2. An ordered query graph.

C5 ∅=

direction of pipeline back-ups

1 2 3 4

5

FIGURE 3. Partial order used for determining back-up 
destinations.
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select a new tuple to fill stage , but we must also un-fill
every stage that is a descendent of  in the rooted tree. For
example, when backing up from stage 5 in Figure 3, we
must un-fill the contents of stages 2 through 4. The algo-
rithm still advances along the pipeline according to the join
ordering. We call this variant of pipelined join rooted-tree
pipelining. Pseudo-code for the algorithm appears in Figure
4.

There are several other known pipeline optimizations that
can be used to further improve performance. For example,
we could mark as “nogood” any tuple encountered in so
stage of the pipe that fails to join with any tuples in som
relation. This way, should the tuple be encountered again
can be immediately skipped since it is certain to lead to 
same failure. This and related “marking” optimizations ha
been proven useful in AI and deductive database doma
[2, 6]. If the relations involved in a first-answer query a
large, then it appears unlikely that the same tuple will ar
in the pipe more than once. The utility of tuple markers 
this environment is therefore unclear, so we leave their c
sideration in the context of first-answer query optimizatio
open to future work.

4 Determining Query Plan Cost

Query optimization requires we have a method for det
mining the cost of a particular query plan given the ava
able set of physical query operators. This section descr
how to predict first-answer query plan cost under a roote
tree pipelined join execution model. The primary operati
of rooted-tree pipelining is the tuple lookup operator that
identifies a set of joining tuples  at each pipeline sta
(line 2 of Figure 4). Our measure of query plan cost is t
net cost of tuple lookup since the other algorithm steps 
negligible in comparison. 

We begin by defining the database statistics required
our cost estimation procedure, and then show how they 
used in determining the expected number of applications
the tuple lookup operator along any predicate within a giv
query. The presentation makes extensive use of the qu
plan illustrated in Figure 5. Relations (nodes) are order

r
r

ROOTED-TREE-PIPELINE-JOIN( )
, 

 = 
if  non-empty then

Remove a tuple  from  and let 
if  then return 
Advance  to the next stage  where 
goto 2

else
if  then return 

goto 3

R1 R2 … Rn 1+, , ,
i 1= j where ∀ 1 j n 1+≤ ≤ let tj, ∅=
Ci t t Ri∈ j∀ i< t   tj, ,{ }

Ci
t Ci ti t=

i n 1+= t1 t2 … tn 1+, , ,( )
i j tj ∅=

i 1= ∅
i parent_ofi( )=

j where j is a descendent of i∀ let tj, ∅=

1
2
3
4
5
6
7
8
9
10
11
12

FIGURE 4. Pseudo-code for rooted-tree pipelining.
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according to the join order, and predicates (edges) 
ordered according to the order in which they are conside
in the pipeline. This implies the second relation linked by
predicate numbered  always appears at stage  in
pipe.

A tuple lookup is said to be attempted along a predicate
 when the pipeline reaches the stage corresponding to

second relation linked by  (stage ) and joining tupl
are identified. We say that a tuple lookup attempt along
predicate  eventually fails if it has to be repeated in orde
to produce an answer to the query.

4.1 Necessary Statistics

Query optimizers make use of statistics that summarize 
contents of the database in order to make cost estima
possible. Here we define the statistical parameters neces
for accurately predicting the cost of a first-answer que
plan. Section 5 provides details on obtaining these statis
and describes how they relate to statistical measurem
appearing elsewhere in the query optimization literature.

When every tuple joins with at least one tuple fro
another relation, the tuple lookup operator is applied exac
once for each of  joins, and then an answer is produc
Unfortunately, since joins are often lossy, we need to know
the probability that the tuple lookup will fail to identify any
joining tuples in order to accurately determine the expec
number of times it is applied. We assume that for each j
predicate , we know the probability  that a tuple in th
first relation fails to join with any tuples in the second rel
tion. The “order” implied by our use of “first” and “second
depends on the join order. The first relation linked by a join
predicate is the parent of the second relation in the rooted
tree. Note that , like our definitions of first and second,
join-order dependent.

Another statistic required for our cost analysis is t
expected number of tuples that join with a given tuple alo
some predicate . Let  be defined as follows: if a tuple
in the first relation linked by a predicate  joins with at lea
one tuple in the second relation, then on average it will jo
with  tuples.

4.2 Notation

Before delving into the details of determining query pla
cost, we review the notation defined thus far and pres
additional notation necessary for simplifying the upcomin
presentation. As done in Figure 5, predicates will be iden

j j 1+

1 2 5

3

4

FIGURE 5. An example query plan.
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fied according to the order they are considered in the pipe-
line.

1.  denotes the number of predicates in the query (imply-
ing the number of relations is ).

2.  denotes the probability a tuple lookup along predicate
 fails to produce any joining tuples.

3.  denotes the mean number of tuples returned should a
lookup along predicate  be successful.

We will also make extensive use of the following additional
notation:

4.  denote the child predicates of pred-
icate  in the rooted tree. Child predicates are those other
predicates connecting to the second relation linked by
predicate . For instance, in Figure 5, the child predicates
of predicate 1 are predicates 2 and 4.

5.  denote those predicates whose first
relation only is an ancestor of predicate  in the rooted
tree. We call these the back-up predicates of predicate .
For instance, the back-up predicates of predicate 4 in Fig-
ure 5 are predicates 2, 3, and 4. Note that a predicate is
always a back-up predicate of itself.

We also make use of two probabilistic functions. Given a
set of  independent events that happen with probability

 respectively, the probability that one or more
events happen will be denoted with , the
value of which is  [4]. Given
a task that fails with probability , we denote the average
number of attempts required for success at the task with

, the value of which is .

4.3 Probability of Tuple Lookup Failure

If we can compute the probability  that a tuple lookup
along predicate  eventually fails, then, if the query has an
answer, the expected number of tuple lookups along predi-
cate  is . This section discusses how to compute 
for each predicate in the query, culminating in a procedure
for estimating the cost of a first-answer query.

Once the pipeline reaches stage , the tuple lookup
along predicate  eventually fails if the join algorithm is
forced to back up to any stage that is an ancestor of predi-
cate  in the rooted tree. There are multiple scenarios which
could lead to such a back-up, the most trivial of which is
failure of the tuple lookup attempt along predicate  to
identify any joining tuples in .

The first back-up to an ancestor of predicate  after
reaching stage  (should one occur) must take place
along some back-up predicate . Let

 denote the probability that a subtree rooted at predi-
cate , when considered independently from other subtrees
in the query plan, does not lead to an answer after the pipe-
line has been advanced to stage . We then have that

.
We first describe how to calculate the probability 

when . For this case, once pipeline flow reaches stage

n
n 1+

pj
j

bj
j

cj 1( ) cj 2( ) … cj m( ), , ,
j

j

aj 1( ) aj 2( ) … aj m( ), , ,
j

j

i
p1 p2 … pi, , ,

Any p1 p2 … pi, , ,( )
1 1 p1–( ) 1 p2–( )… 1 pi–( )–

pf

E pf( ) 1 1 pf–( )⁄

Tj
j

j E Tj( ) Tj

j 1+
j

j

j
Rj 1+

j
j 1+

aj 1( ) aj 2( ) … aj m( ), , ,
Pi j( )

i

j 1+
Tj Any Paj 1( ) j( ) Paj 2( ) j( ) … Paj m( ) j( ), , ,( )=

Pi j( )
i j≥
48
, by the structure of the ordering and the rooted tree
arrangement, we know the pipeline portion corresponding
to the subtree rooted at predicate  is completely unfilled.
This is because any descendent of predicate  must be num-
bered higher than .

The subtree rooted at predicate  will not lead to a
answer if the lookup along predicate  fails. Also, the sub-
tree will not lead to a answer if the lookup along predicate 
succeeds in identifying  tuples, but then we encounter
failure at any subtree rooted beneath predicate  for each of
the  tuples. Therefore, when , 

.
If the predicate has no children, then .

Let us illustrate the idea through a concrete example.
From Figure 5, suppose we are trying to determine  --
the probability the subtree rooted at predicate 1 leads to an
answer after the pipeline advances to the second relation
linked by predicate 1. Should the lookup along predicate 1
fail (which will happen with probability ), a back-up
along predicate 1 takes place and an answer to the subtree is
not produced. Now suppose the lookup along predicate 1
succeeds and identifies exactly  tuples. In this case, an
answer to the subtree will not be produced if the predicate
lookups along predicate 2 or 4 eventually fail for every
tuple identified. We thus have the following:

.
Now consider computing  when . The situation

is complicated by the fact that some stages of the subtree
rooted by predicate  are initially filled after the pipeline
has advanced to stage . For the first tuple identified by
the lookup along predicate , a subtree rooted at a child 
of  fails to lead to an answer with probability . If we
need to consider the other tuples identified by the lookup
along predicate , then a back-up took place to stage ,
un-filling the contents of all its descendents. In this case, the
subtree rooted at a child  of  is completely empty, so it
fails to lead to an answer with probability . Setting the
parameter to  instead of  prevents the calculation of fail-
ure from assuming any initially filled stages. We can now
conclude that when ,

.
If there are no child predicates of predicate , then

.

From Figure 5, suppose we are calculating  -- the
probability that the subtree rooted at predicate 1 fails to lead
to an answer after the pipeline reaches stage 4 (the second
stage linked by predicate 3). For this case, when the pipeline

j 1+

i
i

i
i
i

i
bi

i
bi i j≥

Pi j( ) Any pi Any Pci 1( ) j( ) … Pci m( ) j( ), ,( )bi,( )=
Pi j( ) pi=

P1 1( )

p1

b1

P1 1( ) Any p1 Any P2 1( ) P4 1( ),( )( )b1,( )=
Pi j( ) i j<

i
j 1+

i c
i Pc j( )

i i 1+

c i
Pc i( )

i j

i j<
Pi j( ) Any Pci 1( ) j( ) … Pci m( ) j( ), ,( ) ×=

Any Pci 1( ) i( ) … Pci m( ) i( ), ,( )( )bi 1–

i
Pi j( ) 0=

2 5

3

FIGURE 6. State of the subtree rooted at predicate 1 when 
the pipeline reaches stage 4. Filled stages correspond to 

the highlighted segments. 
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reaches stage 4, we have successful lookups along predi-
cates 1 and 2 within the subtree rooted at predicate 1 (as
illustrated in Figure 6). Therefore,

.

4.4 Query Plan Cost

Given the above method for computing the probability 
that a tuple lookup along predicate  eventually fails, query
plan cost can be determined by calculating the expected
number of tuple lookups using , weighting each such
value by the cost  of each tuple lookup along the predi-
cate, and summing up the values:

Cost of tuple lookup along a particular predicate can
depend on multiple factors including sizes of the involved
relations, the access paths available, clustering, and imple-
mentation details of the algorithms used to perform tuple
lookup. Like  and , the value of  is dependent on the
direction of tuple lookup.

4.5 Summary

•  where  denotes the

tuple lookup cost along predicate .

•  denotes the probability that a lookup along predica
 eventually fails, and

.

•  denotes the probability that a back-up takes pla
along predicate  after the pipeline has reached st

, assuming the subtree rooted at predicate  is c
sidered in isolation from the other subtrees in the query

When , if  connects to a leaf node, then 
otherwise

.
When , if  connects to a leaf node, then 
otherwise

.

• Definitions of , ,  and  appear in Section 4.2.

5 Statistical Issues

The above-described method for determining the cost
first-answer query plans makes use of the statistical para
ters  and  which are not explicitly maintained by exis
ing database systems. Current database systems typi
provide join selectivity, defined as the expected fraction o
tuples in one relation which join with a tuple in another rel

P1 3( ) Any P2 3( ) P4 3( ),( ) Any P2 1( ) P4 1( ),( )( )b1 1–×=

Tj
j

E Tj( )
wj

Cost Query Plan( )
wi

1 Ti–
-------------

i 1=

n

∑=

pi bi wi

Cost Query Plan( )
wi

1 Ti–
-------------

i 1=

n

∑= wi

i

Tj
j

Tj Any Paj 1( ) j( ) Paj 2( ) j( ) … Paj m( ) j( ), , ,( )=

Pi j( )
i

j 1+ i

i j≥ i Pi j( ) pi=

Pi j( ) Any pi Any Pci 1( ) j( ) … Pci m( ) j( ), ,( )bi,( )=
i j< i Pi j( ) 0=

Pi j( ) Any Pci 1( ) j( ) … Pci m( ) j( ), ,( ) ×=
Any Pci 1( ) i( ) … Pci m( ) i( ), ,( )( )bi 1–

ci ai pi bi

bj pj
49
e

e
e

n-

f
e-

lly

-

tion. Consider the join selectivity  of a predicate  linkin
relations  and :

.

Unfortunately, it is not possible to compute  and 
from selectivity and relation cardinality information alone
Some database systems also maintain statistics on the 
and least frequently occurring values in a column, or his
grams of column value distributions. It is possible that h
tograms may be useful in estimating  and .

Interestingly, while these statistics are not derivable fro
those typically maintained by centralized databases, th
are derivable from those usually required for cost estimat
in a distributed environment. For instance, a statistic nec
sary for estimating the result of a semi-join is the semi-jo
selectivity of a predicate, which can be defined as the fr
tion of tuples remaining in the relation following a sem
join. Semi-join selectivity is also sometimes used 
detailed cost modeling of join algorithms [3]. Supposing
predicate  links relation  with , the semi-join
selectivity  of predicate  is defined as:

.

Note then, that , and .
Semantic schema information provides an alternat

method for obtaining estimates of these statistics. Kno
edge bases, object-oriented databases, and modern 
tional bases are often augmented with semantic data
particular, we are interested in cardinality constraints --
those that impose restrictions on the number of links a tup
in one relation can have to tuples in another. A comm
type of cardinality constraint already supported by ma
relational systems is the existence constraint. An existe
constraint can specify that a particular column value m
correspond to some column value in another relation. Ca
nality constraints are also often specified in knowledge-re
resentation languages [8] and object-oriented databases

An existence constraint between two relations impli
that the join predicate between them has a  of  in 
direction of the constraint. If a cardinality constraint 
given as a range [0- ] of tuples that may be linked by
predicate, then  can be estimated by assuming a unif
(or other) distribution. For instance, given that a tuple joi
with [0-3] tuples in another relation, the join predicate has

 of .25 if we assume a uniform distribution. The joi
selectivity of predicate  can then be used to determine
given .

6 Experiments

We performed experiments for the purpose of demonst
ing the accuracy of the cost-estimation formula, the effe
of rooted-tree versus naive pipelining, and the expec
effects of first-answer query optimization on several clas

sj j
Rk Rj 1+

sj

Rk    Rj 1+

Rk Rj 1+
---------------------------

bj 1 pj–( )

Rj 1+
---------------------= =

bj pj

pj bj

j Rk Rj 1+
zj j

zj

Rk    Rj 1+

Rk
---------------------------=

pj 1 zj–= bj sj Rj 1+( ) zj⁄=

pj 0

m
pj

pj
j bj

pj
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of queries. For the evaluation, queries were generated by
randomly creating a tree-structured query graph with a
specified number of joins, and randomly generating two
pairs ( ) for each predicate. Two pairs are required for
each predicate since the values differ depending on the
direction of tuple lookup. To model real-world queries
which frequently contain lossless joins and joins on key col-
umns, we selected the values according to the following 4
distributions. A distribution was chosen with equal proba-
bility each time a value pair was generated.

1)  and 
2)  and 
3)  and 
4)  and 
Values in the specified ranges were selected according to

a random uniform distribution. The parameter  for distri-
butions 3 and 4 was dependent on the experiment. We
assume a fixed unit tuple lookup cost for each predicate in
order to better isolate the effects of varying  and the num-
ber of joins . Allowing tuple lookup cost to vary typically
results in wider distributions of query plan costs given dif-
ferent join orders, so our numbers can be considered conser-
vative.

6.1 Accuracy of Cost Estimation

In order to verify the accuracy of the cost-estimation proce-
dure, we implemented a simulator which would accept a
query plan and simulate execution of rooted-tree pipelining
on the query plan. Given a query, we compared the esti-
mated cost produced by the optimizer to the “actual” co
produced by the execution simulator.

For the first experiment, we had the simulator identi
exactly  tuples with each successful tuple lookup alo
predicate . Queries were generated according to the ab
described method with values  and 
Expected error, averaging across 1, 10, and 100 query r
appear in Figure 7. Expected error for a single query run
41%, though the error rapidly diminishes as we avera
across more and more runs of the query (which could co
spond to either the user running the query more than on
or the user requiring more than a single query answer). 
verified that expected error approaches zero when ave
ing over enough runs for several values of  and . Av
aging over 1000 runs, the error was always within 1
Though this does not constitute a formal proof, it does p
vide reasonable evidence that the cost estimation proced
is correct.

In real-world data, we expect  would reflect the mea
number of tuples identified with a successful tuple looku
rather than the exact number. We therefore repeated 
experiment after modifying the simulator to identify a num
ber of tuples selected from a distribution whose mean w

. For a particular , we used a uniform random distrib
tion within the range . This data skew did no
appreciably affect the outcome (Figure 8).
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 Unlike cost-estimation routines for all-answer queri
[12], we found the accuracy of the cost estimates do 
degrade as the number of joins increases. Though error
be non-negligible for single-run, single-answer queries d
to random variance, in general the lowest-cost plan ha
higher probability of performing well than a plan with
higher estimated cost.

6.2 Naive vs. Rooted-Tree Pipelining

A simulator of naive pipelining was also implemented fo
comparison with rooted-tree pipelining. We generated 1
queries at several values of  and , and randomly gen
ated 1000 plans for each query. We selected the best 
from this set according to our estimation procedure, a
simulated the execution of both rooted-tree and naive pi
lining on these plans. Even though our cost-estimation p
cedure is intended for use with rooted-tree pipelining, w
found it to accurately rank plans according to performan
of naive pipelining as well. We did not exhaustively sear
the space of all query plans because of computational lim

FIGURE 7. Expected Error, no data skew, , .n 7= p .25=
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at larger values of . The plan generation scheme we used
corresponds to that in [10].

The results of the experiment are plotted in the following
figures. First we fixed  at 7 and varied  (Figure 9). Then
we fixed  at .25 and varied  (Figure 10). Each point rep-
resents the mean of the costs computed for each of the 100
queries.

The plot for naive pipelining at high values of  is noisy
even though each point is the average of over 100 queries.
The cause is that naive pipelining occasionally performs
extremely poorly (orders of magnitude worse than the
median) due to the problem described in Section 3. These
cases arise with higher probability at larger values of  and

, hence the increase in noise at those values. Rooted-tree
pipelining, on the other hand, exhibits relatively noise-free
performance. It also performs better, particularly at larger
values of  and .
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6.3 Benefits of First-Answer Query Optimization

Here we show the effects of first-answer query optimization
across a wide variety of queries. As done in Section 6.2, a
point  was chosen,100 queries generated per point, and
1000 plans per query. Figure 11 and Figure 12 plot the
expected mean query plan cost, expected minimum query
plan cost, and expected maximum query plan cost for a par-
ticular point . The first figure scales , and the second
scales .

The bottom end of each error bar represents the expected
cost of the best plan found, and thereby represents the aver-
age cost of a plan selected by an optimizer employing our
technique. If we were to select a plan at random, then the
expected cost is designated by the tic at the center of each
bar. The highest-most point at each bar represents how
badly we may do when selecting an arbitrary plan. In gen-
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FIGURE 11. Expected mean, minimum, and maximum 
query plan costs when varying .p
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eral, the mean speedup of the best plans over the average or
worst plans increases rapidly as both  and  are scaled
upwards, though there is appreciable speedup across all val-
ues examined with the exception of the smallest values of 
and .

7 Conclusions and Future Work

The need for first-answer query processing is likely to grow
as data sets become larger since query result size may grow
proportionally. This paper has addressed the specific needs
of optimizing and executing multi-join first-answer queries.
Our technique, like existing commercial implementations,
exploits pipelining as much as possible in order to avoid
touching large segments of most relations. Since naive pipe-
lining is prone to pathological behavior, we suggested an
alternative pipelining algorithm that backs up according to a
rooted-tree arrangement of the relations implied by the
query graph. Under this execution model, we then presented
techniques for predicting cost through probabilities of tuple-
lookup failure. Finally, we discussed methods for obtaining
the required set of database statistics from traditional cen-
tralized database statistics, distributed database statistics,
and semantic constraints specified as part of the database
schema. Ideally, we believe a system providing thorough
support for first-answer query processing should strive to
maintain the specific statistics we have described. 

This work remains to be extended to cyclic queries,
though we have ideas on how this might be accomplished.
In the cyclic case, query graphs can still be arranged into
rooted trees for rooted-tree pipelining [9]. The probabilistic
analysis will have to be extended to consider that tuple-
lookups along more than one predicate may be required at
any one stage in the pipe. The work could also be extended
to consider cases where non-pipelined methods may be
appropriate. For instance, two small relations may be better
off joined greedily instead of lazily through pipelining. 

We have avoided issues involving selection and projec-
tion, though there are trivial methods for dealing with these
operators for first-answer query processing which seem rea-
sonable. It is unlikely that the heuristic of “pushing sele
tions/projections down as far as possible” will be benefic
when finding a first answer, since executing the initi
selections or projections would likely require touching larg
portions of the involved relations. A more attractive altern
tive is to perform the selections and projections on the 
during pipelining. While some selections may be redunda
using this approach, we suspect the amount of redunda
will be small compared to the cost of performing all sele
tions before the joins. 

On a related note, while we have modeled the cost o
pipelined join algorithm that identifies a set of joinin
tuples at each stage, it may be beneficial in some circu
stances to instead lazily fetch joining tuples one-at-a-tim
on an as-needed basis. For instance, consider the case 
an index is available on the join column of a relation, b
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the tuples are not clustered on the join attribute. The cos
fetching the set of joining tuples is proportional to the num
ber of tuples identified. If only a few of the entire set a
required in order to produce an answer, work will be was
by identifying them all.
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