
Using CSP Look-Back Techniques to Solve Real-World SAT Instances

Roberto J. Bayardo Jr.
The University of Texas at Austin

Department of Computer Sciences (C0500)
Austin, TX 78712 USA
bayardo@cs.utexas.edu

http://www.cs.utexas.edu/users/bayardo

Robert C. Schrag
Information Extraction and Transport, Inc.

1730 North Lynn Street, Suite 502
Arlington, VA 22209 USA

schrag@iet.com
http://www.iet.com/users/schrag

-

s

n

f
su
ifi
lity
k-
A
g,
n

e

lk-
ck

s
c-
e
h
g
lo
ce
s

ce

ass
lli-
 or
m
bi-
d

les

e
p-

am
is
nd
s.
u

th
le

(in
e-

rch
ex-
f a

r
as
s

ba-
re
ran-
at

ra-
ion
AT

age

go-
g-
es
 in

o-
ev-
utz
rs)

Appears in Proc. of the 14th Nat’l Conf. on Artificial Intelligence, 203-208, 1997.
 Abstract

We report on the performance of an enhanced version of the
“Davis-Putnam” (DP) proof procedure for propositional
satisfiability (SAT) on large instances derived from real-
world problems in planning, scheduling, and circuit diagnosis
and synthesis. Our results show that incorporating CSP look
back techniques -- especially the relatively new technique of
relevance-bounded learning -- renders easy many problem
which otherwise are beyond DP’s reach. Frequently they
make DP, a systematic algorithm, perform as well or better
than stochastic SAT algorithms such as GSAT or WSAT. We
recommend that such techniques be included as options i
implementations of DP, just as they are in systematic
algorithms for the more general constraint satisfaction
problem.

Introduction
While CNF propositional satisfiability (SAT) is a specific
kind constraint satisfaction problem (CSP), until recently
there has been little application of popular CSP look-back
techniques in SAT algorithms. In previous work [Bayardo
& Schrag 96] we demonstrated that a look-back-enhanced
version of the Tableau algorithm for 3SAT instances [Craw-
ford and Auton 96] can solve easily many instances which
without look-back are “exceptionally hard” -- orders o
magnitude harder than other instances with the same
face characteristics. In this work the instances were art
cially generated. Here, we demonstrate the practical uti
of CSP look-back techniques by using a look-bac
enhanced algorithm related to Tableau to solve large S
instances derived from real-world problems in plannin
scheduling, and circuit diagnosis and synthesis. Kautz a
Selman [96] had found unenhanced Tableau inadequat
solve several planning-derived instances and resorted
using a stochastic algorithm, WSAT (also known as Wa
SAT) [Selman et al. 94]; our results show that look-ba
enhancements make this recourse unnecessary.

Given the usual framework of backtrack search for sy
tematic solution of the finite-domained constraint satisfa
tion problem (CSP), techniques intended to improv
efficiency can be divided into two classes: look-ahead tec
niques, which exploit information about the remainin
search space, and look-back techniques, which exp
information about search which has already taken pla
The former class includes variable ordering heuristic
value ordering heuristics, and dynamic consistency enfor
Copyright 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

ur
r-
-

T

d
to
to

-

-

it
.

,
-

ment schemes such as forward checking. The latter cl
includes schemes for backjumping (also known as inte
gent backtracking) and learning (also known as nogood
constraint recording). In CSP algorithms, techniques fro
both classes are popular; for instance, one common com
nation of techniques is forward checking, conflict-directe
backjumping, and an ordering heuristic preferring variab
with the smallest domains.

SAT is a specific kind of CSP in which every variabl
ranges over the values {true, false}. For SAT, the most po
ular systematic algorithms are variants of the Davis-Putn
procedure (DP) [Davis et al. 62]. In CSP terms, DP
equivalent to backtrack search with forward checking a
an ordering heuristic favoring unit-domained variable
Two effective modern implementations of it are Tablea
[Crawford and Auton 96] and POSIT [Freeman 95]; bo
are highly optimized and include carefully selected variab
ordering heuristics. Neither of these implementations
their published descriptions) include look-back enhanc
ments like we describe.

Systematic, or global search algorithms traverse a sea
space systematically to ensure that no part of it goes un
plored. They are complete: given enough running time, i
solution exists they will find it; if no solution exists they
will report this. Alternative to systematic algorithms fo
SAT are stochastic, or local search algorithms such
WSAT and GSAT [Selman et al. 92]. Stochastic algorithm
explore a search space randomly by making local pertur
tions to a working assignment without memory of whe
they have been. They are incomplete: they are not gua
teed to find a solution if one exists; they cannot report th
no solution exists if they do not find one.

Stochastic algorithms outperform systematic ones d
matically on satisfiable instances from the phase transit
region of random problem spaces, such as Random 3S
[Selman et al. 92]. Instances in this region are on aver
most difficult for widely differing algorithms; they have
come to be used frequently as benchmarks for SAT al
rithm performance. At the same time, it is widely reco
nized that they have very different underlying structur
from SAT instances one would expect to arise naturally
real-world problems of interest.

Stochastic algorithms also outperform systematic alg
rithms such as Tableau on some real-world problems. S
eral SAT-encoded planning problems described by Ka
and Selman [96] are infeasible for Tableau (given 10 hou
but solved easily by WSAT (given around 10 minutes). O

e
a
in
ta

,
d
ra

t-

re

.

on

F.
.

n-
y,
ls
ith

te
c
 in
ty
e

 in

of
ent

 in
his

t
y
en-

u
ti-

ari-
is
 is

If
ran-
me

es
all
et.
 at

di-
ndi-
ute
y

d
 a
ri-
led
me
ith-
n-
ly

the
 at
ns
n-

ck-

h
ing
Its

s,
uld
er.
look-back enhanced version of DP is competitive with
WSAT in identifying feasible plans using the same
instances. Furthermore, look-back-enhanced DP proves the
nonexistence of shorter plans in 1 to 3 minutes on instances
which Tableau did not solve in 10 hours; this task is impos-
sible for WSAT because of its incompleteness. The innova-
tive work of Kautz and Selman [96] was “pushing th
envelope” of feasibility for planning problems; this lays
foundation where our look-back-enhanced DP slips
neatly as a key component in a planning system at the s
of the art.

Definitions
A propositional logic variable ranges over the domain

. An assignment is a mapping of these values
to variables. A literal is the occurrence of a variable, e.g.
or its negation, e.g. ; a positive literal is satisfie
when the variable is assigned true, and a negative lite

 is satisfied when is assigned false. A clause is a sim-
ple disjunction of literals, e.g. ; a clause is sa
isfied when one or more of its literals is satisfied. A unit
clause contains exactly one variable, and a binary clause
contains exactly two. The empty clause signals a con-
tradiction (seen in the interpretation, “choose one or mo
literals to be true from among none”). A conjunctive nor-
mal formula (CNF) is a conjunction of clauses (e.g

); a CNF is satisfied if all of its
clauses are satisfied.

For a given CNF, we represent an assignment notati
ally as a set of literals each of which is satisfied. A nogood
is a partial assignment which will not satisfy a given CN
The clause encodes the nogood
We call such a nogood-encoding clause a reason. Resolu-
tion is the operation of combining two input clauses me
tioning a given literal and its negation, respectivel
deriving an implied clause which mentions all other litera
besides these. For example, resolves w

 to produce .

Basic Algorithm Description
The Davis-Putnam proof procedure (DP) is represen
below in pseudo-code. As classically stated, SAT is a de
sion problem, though frequently we also are interested
exhibiting a satisfying truth assignment , which is emp
upon initial top-level entry to the recursive, call-by-valu
procedure DP.

The CNF and the truth assignment are modified
calls by name to UNIT-PROPAGATE. If contains a contra-

true false,{ }
x

x¬ x
x

x¬ x
x y z¬∨ ∨()

 ()

a b∨() x y z¬∨ ∨()∧

a b c¬∨ ∨() a¬ b¬ c, ,{ }

a b¬∨()
b c∨() a c∨()

σ

if in then return
if then

return

DP F σ,()
UNIT-PROPAGATE F σ,()

 () F
F ∅= exit-with σ()

α SELECT-BRANCH-VARIABLE F()←
DP F α(){ }∪ σ α{ }∪,()
DP F α¬(){ }∪ σ α¬{ }∪,()

F σ
F

te

l

-

d
i-

diction, this is failure and backtracking is necessary. If all
its clauses have been simplified away, then the curr
assignment satisfies the CNF. SELECT-BRANCH-VARIABLE
is a heuristic function returning the next variable to value
the developing search tree. If neither truth value works, t
also is failure.

UNIT-PROPAGATE adds the single literal from a uni
clause to the literal set , then it simplifies the CNF b
removing any clauses in which lambda occurs, and short
ing any clauses in which occurs through resolution.

Modern variants of DP including POSIT and Tablea
incorporate highly optimized unit propagators and sophis
cated branch-variable selection heuristics. The branch-v
able selection heuristic used by our implementation
inspired by the heuristics of POSIT and Tableau, though
somewhat simpler to reduce implementation burdens.

Details of branch-variable selection are as follows.
there are no binary clauses, select a branch variable at
dom. Otherwise, assign each variable appearing in so
binary clause a score of
where and are the numbers of occurrenc
of and in all binary clauses, respectively. Gather
variables within 20% of the best score into a candidate s
If there are more than 10 candidates, remove variables
random until there are exactly 10. If there is only one can
date, return it as the branch variable. Otherwise, each ca
date is re-scored as follows. For a candidate , comp

 and as the number of variables valued b
UNIT-PROPAGATE after making the assignment an

 respectively. Should either unit propagation lead to
contradiction, immediately return as the next branch va
able and pursue the assignment for this variable which
to the contradiction. Otherwise, score using the sa
function as above. Should every candidate be scored w
out finding a contradiction, select a branch variable at ra
dom from those candidates within 10% of the best (new
computed) score.

Except in the cases of contradiction noted above,
truth value first assigned to a branch variable is selected
random. We have applied the described randomizatio
only where additional heuristics were not found to substa
tially improve performance across several instances.

Incorporating CBJ and Learning
The pseudo-code version of DP above performs naive ba
tracking mediated by the recursive function stack. Conflict
directed backjumping (CBJ) [Prosser 93] backs up throug
this abstract stack in a non-sequential manner, skipp
stack frames where possible for efficiency’s sake.
mechanics involve examining assignments made by UNIT-
PROPAGATE, not just assignments to DP branch variable
so it is more complicated than the DP pseudo-code wo
represent. We forego CBJ pseudo-code in this short pap

while (exists in where)
UNIT-PROPAGATE F σ,()

ω F ω λ()=
σ σ λ{ }∪←
F SIMPLIFY F()←

λ
ω σ

λ¬

γ
neg γ() posγ()⋅ negγ() posγ()+ +

posγ() negγ()
γ γ¬

γ
posγ() negγ()

γ{ }
γ¬{ }

γ

γ

g”
the
-
are
gs
ks

lan
ter

d
t
ing
ort

he
ble

 in
he
de
ker
d

00
s.

m-
We implement CBJ by having UNIT-PROPAGATE main-
tain a pointer to the clause in the (unsimplified) input CNF
which serves as the reason for excluding a particular assign-
ment from consideration. For instance, when is
part of the current assignment, the input clause
is the reason for excluding the assignment . When-
ever a contradiction is derived, we know some variable has
both truth values excluded. CBJ constructs a working rea-
son for this failure by resolving the two respective rea-
sons; then it backs up to the most recently assigned variable

 in . Suppose was the most recent assignment of
variable . If is excluded by a reason , then we
create a new working reason by resolving and and
back up to the most recently assigned variable in . Other-
wise, we install as the reason for excluding , change
the current assignment to include , and proceed with
DP.

Extending our example, suppose upon detecting failure
we have the complementary reason , and that

 was assigned after . Resolution gives us the working
reason , so CBJ backs up to where the assignment

 was made. If is excluded, then suppose the rea-
son is . Resolution yields the new working reason

 and CBJ keeps backing up. If is not excluded
(was a branch variable), becomes the reason
excluding , and replaces in the current
assignment before DP continues.

Learning schemes maintain derived reasons longer than
does CBJ, which can discard them as soon as they are no
longer denoting a value as excluded. Unrestricted learning
records every derived reason exactly as if it was a clause
from the underlying instance, allowing it to be used for the
remainder of the search. Because the overhead of unre-
stricted learning is high, we apply only the restricted learn-
ing schemes as defined in [Bayardo & Miranker 96]. Size-
bounded learning of order retains indefinitely only those
derived reasons containing or fewer variables. For
instance, the reason would be maintained by sec-
ond-order size-bounded learning, but longer reasons would
not. Relevance-bounded learning of order maintains any
reason that contains at most variables whose assignments
have changed since the reason was derived. For example,
suppose we are performing second-order relevance-
bounded learning, and we derive a reason
where variables , , and where assigned in the order
they appear. This reason would be maintained by second-
order relevance-bounded learning as long as remains
assigned as . As soon as is re-assigned or un-assigned
by a backup, the reason would be discarded.

Test Suites
We use three separate test suites to compare the perfor-
mance of look-back-enhanced DP with other algorithms
whose performance has been reported for the same
instances: SAT-encoded planning instances from Kautz and
Selman1; selected circuit diagnosis and planning instances
from the DIMACS Challenge directory associated with the
1993 SAT competition2; and planning, scheduling, and cir-

a¬ b¬,{ }
a b x∨ ∨()

x¬{ }

C

δ C γ{ }
γ γ¬{ } D

E C D
E

C γ{ }
γ¬{ }

a b x¬∨ ∨()
b a

a b∨()
b¬{ } b{ }

b¬ y∨()
a y∨() b{ }
b a b∨()

b¬{ } b{ } b¬{ }

i
i

a b∨()

i
i

a b y∨ ∨()
a b y

a
a¬ a
cuit synthesis instances from the 1996 Beijing SAT compe-
tition3.

Selected SAT-encoding planning instances constructed
by Kautz and Selman [96] (the hardest of these instances
which were available to us) are listed in Table 1. The “lo
instances correspond to planning problems in logistics;
“bw” instances are for blocks worlds -- not “real” worlds -
but they are nonetheless hard. The “gp” instances
Graphplan encodings, the “dir” instances direct encodin
(state-based for the logistics instances, linear for bloc
world), and the “un” instances are unsatisfiable Graphp
encodings used to demonstrate the infeasibility of shor
plans. (See cited paper for more details.)

In the DIMACS suite, we looked at Van Gelder an
Tsuji’s “ssa” (single-stuck-at) and “bf” (bridge-fault) circui
diagnosis instances, and Selman’s tower of hanoi plann
instances also using linear encoding. For brevity, we rep
on only the hardest, for all algorithms investigated, of t
single-stuck-at and bridge-fault instances (shown in Ta
2).

We report on all instances in the Beijing suite, shown
Table 3. The planning instances (“blocks”) again use t
linear encodings. The scheduling instances (“e”) enco
Sadeh’s benchmarks as described in [Crawford and Ba
94]. The circuit synthesis instances (“bit”) were contribute
by Bart Selman.

Experimental Methodology
Our algorithms are coded in C++ using fewer than 20
lines including header files, blank lines, and comment4

The implementation is flexible, with different look-back
techniques and degrees installed by setting various co

1. Available at ftp://ftp.research.att.com/dist/ai/logistics.tar.Z and
satplan.data.tar.Z.

2. Available at ftp://dimacs.rutgers.edu/pub/challenge/satisfiabil-
ity.

3. Available at http://www.cirl.edu/crawford/beijing.
4. Source code available at http://www.cs.utexas.edu/users/

bayardo.

TABLE 1. Kautz and Selman’s planning instances.

instance vars clauses sat type
log_gp.b 2,069 29,508 Y planning
log_gp.c 2,809 48,920 Y planning
log_dir.a 828 6,718 Y planning
log_dir.b 843 7,301 Y planning
log_dir.c 1,141 10,719 Y planning
log_un.b 1,729 21,943 N planning
log_un.c 2,353 37,121 N planning
bw_dir.c 3,016 50,457 Y planning
bw_dir.d 6,325 131,973 Y planning

TABLE 2. DIMACS instances.

instance vars clauses sat type
ssa2670-141 986 2,315 N diagnosis
bf1355-075 2,180 6,778 N diagnosis
hanoi4 718 4,932 Y planning
hanoi5 1931 14,468 Y planning

ar
c

o-
 is
e

)”,
e
e
al

rld
 f
st
d

 W
e

ig
l-

in
e
o
ac
ea
, a
ise
e

 t
e

ig

ta
 a

d

 per
to

f

by
eri-
er-
//
f

e is
).
the
er

nd
ut-
.d,
se
C-
ost
r is
toff
toff
-

cut-
t
 are
 is
ich
ub-
all

P
 of

IT
ce,
ble
ce
pile-time and run-time parameters. We did not optimize the
implementation extensively. We believe investing more
attention in this regard, perhaps along the lines suggested
by Freeman [95], should improve our performance by up to
a factor of three. Freeman’s more sophisticated branch-v
able selection heuristics and instance preprocessing te
niques also should improve performance.

We experiment with several variants of our DP alg
rithm. The version applying no look-back enhancements
denoted “naivesat”, that applying only CBJ “cbjsat”, on
applying relevance-bounded learning of order “relsat(
and one applying size-bounded learning of order “siz
sat()”. We only use learn orders of 3 and 4, since high
learn orders resulted in too high an overhead to be gener
useful, and lower learn orders had little effect.

Care must be taken when experimenting with real wo
instances because the number of instances available
experimentation is often limited. The experiment mu
somehow allow for performance results on the limite
instance space to generalize to other similar instances.
found the runtime variance of algorithms solving the sam
instance to be extremely high given what seem to be ins
nificant differences in either value or variable ordering po
icies, whether or not the instance is satisfiable.

Kautz and Selman [96] address this issue by averag
WSAT’s runtime over multiple runs. We take the sam
approach and run our algorithms several times (100)
each instance with a different random number seed for e
run to ensure different execution patterns. In order to d
with runs which could take an inordinate amount of time
cutoff time was imposed (10 minutes unless otherw
noted) after which the algorithm was to report failure. W
report the percentage of instances an algorithm failed
solve within the cutoff time. We report the mean CPU tim
required per run and sometimes the mean variable ass
ments made per run, averaged over successful runs.

The experiments were performed on SPARC-10 works
tions. Kautz and Selman [96] reported running times from
110-MHz SGI Challenge. To “normalize” our running
times against theirs for the same instances, we solve

TABLE 3. Beijing instances.

instance vars clauses sat type
e0-10-by-5-1 19,500 108,887 Y scheduling
e0-10-by-5-4 19,500 104,527 Y scheduling
en-10-by-5-1 20,700 111,567 Y scheduling
en-10-by-5-8 20,700 113,729 Y scheduling
ew-10-by-5-1 21,800 118,607 Y scheduling
ew-10-by-5-8 22,500 123,329 Y scheduling
3blocks 283 9,690 Y planning
4blocksb 410 24,758 Y planning
4blocks 758 47,820 Y planning
2bitadd_10 590 1,422 N synthesis
2bitadd_11 649 1,562 Y synthesis
2bitadd_12 708 1,702 Y synthesis
2bitcomp_5 125 310 Y synthesis
2bitmax_6 252 766 Y synthesis
3bitadd_31 8,432 31,310 Y synthesis
3bitadd_32 8,704 32,316 Y synthesis

i i
i

i

i-
h-

-
r
ly

or

e

-

g

n
h
l

o

n-

-

a

selected set of instances and compared the mean “flips
second” reported by WSAT, concluding their machine
have been 1.6 times faster than our SPARC-105. In the
experimental results that follow, we take the liberty o
reporting all run-times in “normalized SPARC-10” CPU
seconds. Instead of normalizing run-times reported
Kautz and Selman for Tableau (ntab), we repeat the exp
ments on our machine, only using the newest available v
sion of Tableau, “ntab_back”, available at http:
www.cirl.uoregon.edu/crawford/ntab.tar. This version o
Tableau incorporates a backjumping scheme, and henc
most similar to our “cbjsat” (though better optimized
Because ntab_back incorporates no randomizations,
runtimes reported for this algorithm are for a single run p
instance.

Experimental Results
Table 4 displays performance data for relsat(4), WSAT, a
ntab_back on Kautz and Selman’s planning instances. C
off time was 10 minutes for each instance except bw_dir
for which it was 30 minutes. The times for WSAT are tho
reported by Kautz and Selman [96], normalized to SPAR
10 CPU seconds. Relsat(4) outperformed WSAT on m
instances. One exception where WSAT is clearly superio
on instance log_dir.c which caused relsat(4) to reach cu
22 times. Instance bw_dir.d caused relsat(4) to reach cu
18 times, but it still outperformed WSAT by several min
utes even after averaging in 30 minutes for each relsat
off. Though it is difficult to draw solid conclusions abou
the performance of ntab_back since the times reported
only for a single run, we can determine that relsat(4)
more effective than ntab_back on the instances for wh
relsat(4) never reached cutoff, yet ntab_back required s
stantially more than 10 minutes to solve. This includes
log_gp and log_un instances.

Table 5 displays performance data for our several D
variants on DIMACS instance bf1355-075 -- the hardest
the bridge-fault instances. Freeman [95] reports that POS
requires 9.8 hours on a SPARC 10 to solve this instan
and we found ntab_back to solve it in 17.05 seconds. Ta
6 displays the same information for the DIMACS instan

5. We could not easily repeat the experiments of Kautz and Sel-
man on our machines due to the need to hand-tune the multiple
input parameters of WSAT.

TABLE 4. Performance of relsat(4) on Kautz and Selman’s
planning instances.

instance relsat(4) % fail WSAT ntab_back
log_gp.b 12.9 0% 75.2 2,621
log_gp.c 39.4 0% 419.2 11,144
log_dir.a 4.1 0% 4.3 369.7
log_dir.b 16.6 0% 2.6 161.4
log_dir.c 90.3 22% 3.0 > 12 hours
log_un.b 66.8 0% -- 12,225
log_un.c 192.5 0% -- > 12 hours
bw_dir.c 119 0% 1072 16.9
bw_dir.d 813.3 18% 1499 > 12 hours

y
es

ep-
e.
s

r-

 a
and
%
wo
 to
ed
se
u.
an
 a
lv-

(4)
 in
ksb
t(4)
nd
ore
r
ec-
e to
ig-
l-

ble
ere
l

or-
of
k-

tion
s of
 as
of
aces

ve
h-
ssa270-141 -- the hardest of the single-stuck-at instances.
Freeman reports POSIT to require 50 seconds to solve this
instance6, and we found ntab_back to solve it in 1,353 sec-
onds. Both of these instances are unsatisfiable.

Naivesat was unable to solve either instance within 10
minutes in any of 100 runs. Adding CBJ resulted in the
bridge-fault instance being solved in all 100 runs, but the
single-stuck-at instance still caused 23 failures. All the
learning algorithms performed extremely well on the
bridge-fault instance. For the single-stuck-at-instance, rele-
vance-bounded learning resulted in a significant speedup.
Fourth-order size-bounded learning, while restricting the
size of the search space more than third-order size-bounded
learning, performed less well due to its higher overhead.

DIMACS instances hanoi4 and hanoi5 appear to contain
very deep local minima; although they are satisfiable, they
have not, to our knowledge, been solved by stochastic algo-
rithms. Ntab_back solves hanoi4 in 2,877 seconds but was
unable to solve hanoi5 within 12 hours. We are not aware of
any SAT algorithm reported to have solved hanoi5. The
results for our DP variants on hanoi4 appear in Table 7.
Though sizesat(4) appears faster than relsat(3), its mean
run-time is skewed by the fact that it only successfully
solved the instance in 21% of its runs. Relsat(3) was suc-
cessful in nearly all runs and relsat(4) in all but one. We ran
the same set of DP variants on hanoi5. The only variant that

6. Freeman also reports that POSIT exhibits high run-time vari-
ability on ssa2670-141, though the variance is not quantified.

TABLE 5. Performance on DIMACS bridge-fault instance
bf1355-075.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 115 999,555 0%
sizesat(3) 2.6 18,754 0%
sizesat(4) .5 3,914 0%
relsat(3) 3.6 23,107 0%
relsat(4) .6 4,391 0%

TABLE 6. Performance on DIMACS single-stuck-at instance
ssa270-141.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 415 9.4 Million 23%
sizesat(3) 242 5.0 Million 0%
sizesat(4) 278 4.7 Million 4%
relsat(3) 71 1.2 Million 0%
relsat(4) 46 .62 Million 0%

TABLE 7. Performance on DIMACS planning instance hanoi4.

algorithm run-time assgnmnts % fail
naivesat -- -- 100%
cbjsat 325 3.5 Million 94%
sizesat(3) 214 1.7 Million 92%
sizesat(4) 227 1.4 Million 79%
relsat(3) 254 1.6 Million 13%
relsat(4) 183 .89 Million 1%
successfully solved the instance at all was relsat(4), and it
did so in only 4 out of the 100 attempts. The average run-
time in these four successful runs was under three minutes.

Our DP variants performed relatively well on most of the
Beijing instances. The general trend was that thus far illus-
trated -- the more look-back applied, the better the perfor-
mance and the lower the probability of reaching cutoff. We
were able to solve all the instances within this suite without
significant difficulty using relsat(4) with the exception of
the “3bit” circuit instances which were never solved by an
of our DP variants. Interestingly, we found these instanc
were trivial for WSAT.

The “2bit” circuit instances were trivial (a fraction of a
second mean solution time) even for cbjsat, with the exc
tion of 2bitadd_10, their only unsatisfiable representativ
This instance was not solvable by any of our algorithm
within 10 minutes. After disabling cutoff, relsat(4) dete
mined it unsatisfiable in 18 hours.

Relsat(4) solved 4 out of 6 scheduling instances with
100% success rate. Two of the instances, e0-10-by-5-1
en-10-by-5-1 resulted in failure rates of 21% and 18
respectively. Repeating the experiments for these t
instances with a 30-minute cutoff reduced the failure rate
3% and 1% respectively. Crawford and Baker [94] report
that ISAMP, a simple randomized algorithm, solved the
types of instances more effectively than WSAT or Tablea
Our implementation of ISAMP solved these 6 instances
order of magnitude more quickly than relsat(4), and with
100% success rate. We did not find ISAMP capable of so
ing any other instances considered in this paper.

Of the Beijing planning instances, relsat(3) and relsat
found 3blocks to be easy, solving it with 100% success
6.0 and 6.4 seconds on average respectively. The 4bloc
instance was also easy, with both relsat(3) and relsa
again achieving 100% success, though this time in 79 a
55 seconds respectively. The 4blocks instance was m
difficult. The failure rate was 34% for relsat(3) and 17% fo
relsat(4), with average CPU seconds of 406 and 333 s
onds respectively. Because the mean times were so clos
the cutoff, we expect increasing the cutoff time should s
nificantly reduce the failure rate as it did with the schedu
ing instances.

Discussion
Look-back enhancements clearly make DP a more capa
algorithm. For almost every one of the instances tested h
(selected for their difficulty), learning and CBJ were critica
for good performance. We suspect the dramatic perf
mance improvements resulting from the incorporation
look-back is in fact due to a synergy between the loo
ahead and look-back techniques applied. Variable selec
heuristics attempt to seek out the most-constrained area
the search space to realize inevitable failures as quickly
possible. Learning schemes, through the recording
derived clauses, can create constrained search-sub-sp
for the variable selection heuristic to exploit.

Size-bounded learning is effective when instances ha
relatively many short nogoods which can be derived wit

d
ly
ea
e
ty

or
ch
er

in
br
r’s
-
 a
a

tha
hi
m

ev
e-
P
ls
re
n

is
pl

m
ly

nd
ac
if

ce

D
e

DP
 a
g
g
),

en-
P

ce-
 a

nst

t
8)

g:
out deep inference. Relevance-bounded learning is effective
when many sub-problems corresponding to the current DP
assignment also have this property.7 Our findings indicate
that real-world instances often contain subproblems with
short, easily derived nogoods. Phase transition instances
from Random 3SAT tend to have very short nogoods
[Schrag and Crawford 96], but these seem to require deep
inference to derive, and look-back-enhanced DP provides
little advantage on them [Bayardo & Schrag 96].

As we have noted, a few test instances were infeasible
for look-back-enhanced DP but easy or even trivial for
WSAT. Look-back for DP is not a “magic bullet”, and goo
look-back techniques alone will not result in universal
superior performance, just as alone the good look-ah
techniques included in Tableau and POSIT do not. The b
algorithms, stochastic or systematic, are bound to be s
mied by instances of sufficient size and complexity
adversarial structure. Nevertheless, combining good te
niques for look-ahead and look-back is likely to give bett
performance across a broad range of problems.

Some researchers have attempted to exploit the dist
advantages of systematic and stochastic search in hy
global/local search algorithms. Ginsberg and McAlleste
[94] partial-order dynamic backtracking, which incorpo
rates a form of relevance-bounded learning along with
scheme that relaxes the restrictions on changing past v
able assignments, has been shown to perform better
Tableau on a random problem space with crystallograp
structure. Mazure et al. [96] evaluated a hybrid algorith
with interleaved DP and local search execution using s
eral instances from the DIMACS suite, showing that it fr
quently outperformed capable non-hybrid D
implementations. Because look-back enhanced DP is a
effective at solving the DIMACS instances used by Mazu
et al. and the crystallographic instances of Ginsberg a
McAllester [Bayardo and Schrag 96], future work
required to see if and when these techniques are com
mentary to look-back.

Given the similarities between experimental results fro
this study and those from our previous study on random
generated “exceptionally hard” instances [Bayardo a
Schrag 96], we speculate that this random problem sp
may contain instances that better reflect computational d
ficulties arising in real-world instances than random spa
like Random 3SAT.

Conclusions
We have described CSP look-back enhancements for
and demonstrated their significant advantages. We feel th
performance warrants their being included as options in
implementations more commonly. Where DP is used in
larger system (for planning, scheduling, circuit processin
knowledge representation, higher-order theorem provin
etc., or in a hybrid systematic/stochastic SAT algorithm

7. A theoretical comparison of these two methods for restricting
learning overhead appears in [Bayardo & Miranker 96].
d
st
-

-

ct
id

ri-
n

c

-

o

d

e-

e
-
s

P
ir

,
,

look-back-enhanced DP should probably replace un
hanced DP; where another SAT algorithm is used, D
should be given a new evaluation using look-back enhan
ments. Finally, look-back-enhanced DP should become
standard algorithm, along with unenhanced DP, agai
which other styles of SAT algorithm are compared.

References

Bayardo, R. J. and Miranker, D. P. 1996. A Complexity Analysis
of Space-Bounded Learning Algorithms for the Constraint Satis-
faction Problem. In Proc. 13th Nat’l Conf. on Artificial Intelli-
gence, 558-562.

Bayardo, R. J. and Schrag, R. 1996. Using CSP Look-Back Tech-
niques to Solve Exceptionally Hard SAT Instances. In Proc. Sec-
ond Int’l Conf. on Principles and Practice of Constrain
Programming (Lecture Notes in Computer Science v. 111,
Springer, 46-60.

Crawford, J. M. and Auton, L. D. 1996. Experimental Results on
the Crossover Point in Random 3SAT. Artificial Intelligence 81(1-
2), 31-57.

Crawford, J. M. and Baker, A. B. 1994. Experimental Results on
the Application of Satisfiability Algorithms to Scheduling Prob-
lems. In Proc. Twelfth Nat’l Conf. on Artificial Intelligence, 1097-
1097.

Davis, M., Logemann, G. and Loveland, D. 1962. A Machine Pro-
gram for Theorem Proving, CACM 5, 394-397.

Freeman, J. W. 1995. Improvements to Propositional Satisfiability
Search Algorithms. Ph.D. Dissertation, U. Pennsylvania Dept. of
Computer and Information Science.

Frost, D. and Dechter, R. 1994. Dead-End Driven Learning. In
Proc. of the Twelfth Nat’l Conf. on Artificial Intelligence, 294-300.

Ginsberg, M. and McAllester, D. 1994. GSAT and Dynamic Back-
tracking, Principles of Knowledge Representation and Reasonin
Proceedings of the Fourth Int’l Conf., 226-237.

Kautz, H. and Selman, B. 1996. Pushing the Envelope: Planning,
Propositional Logic, and Stochastic Search. In Proc. 13th Nat’l
Conf. on Artificial Intelligence, 558-562.

Mazure, M., Sais, L. and Gregoire, E. 1996. Detecting Logical
Inconsistencies. In Proc. of the Fourth Int’l Symposium on Artifi-
cial Intelligence and Mathematics, 116-121.

Prosser, P. 1993. Hybrid Algorithms for the Constraint Satisfac-
tion Problem. Computational Intelligence 9(3):268-299.

Schrag, R. and Crawford, J. M. Implicates and Prime Implicates in
Random 3SAT. Artificial Intelligence 81(1-2), 199-222.

Selman, B., Kautz, H., and Cohen, B., 1994. Noise Strategies for
Local Search. In Proc. Twelfth Nat’l Conf. on Artificial Intelli-
gence, 337-343.

Selman, B., Levesque, H. and Mitchell, D. 1992. A New Method
for Solving Hard Satisfiability Problems, In Proc. Tenth Nat’l
Conf. on Artificial Intelligence, 440-446.

Stallman R. M. and. Sussman G. J., 1977. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-
Aided Circuit Analysis. Artificial Intelligence 9, 135-196.

	Abstract
	Introduction
	Definitions
	Basic Algorithm Description
	Incorporating CBJ and Learning
	Test Suites
	Experimental Methodology
	Experimental Results
	Discussion
	Conclusions
	References

