
A Complexity Analysis of Space-Bounded Learning Algorithms for the
Constraint Satisfaction Problem

Roberto J. Bayardo Jr. and Daniel P. Miranker

Department of Computer Sciences and Applied Research Laboratories
The University of Texas at Austin (C0500)

Austin, Texas 78712
[bayardo, miranker]@cs.utexas.edu

Appeared in Proc. of the 13th Nat’l Conf. on Artificial Intelligence, 298-304, 1996.
Abstract

Learning during backtrack search is a space-intensive
process that records information (such as additional
constraints) in order to avoid redundant work. In this
paper, we analyze the effects of polynomial-space-
bounded learning on runtime complexity of backtrack
search. One space-bounded learning scheme records only
those constraints with limited size, and another records
arbitrarily large constraints but deletes those that become
irrelevant to the portion of the search space being
explored. We find that relevance-bounded learning allows
better runtime bounds than size-bounded learning on
structurally restricted constraint satisfaction problems.
Even when restricted to linear space, our relevance-
bounded learning algorithm has runtime complexity near
that of unrestricted (exponential space-consuming)
learning schemes.

Introduction

Tractable subclasses of the finite constraint satisfaction
problem can be created by restricting constraint graph struc-
ture. The algorithms that exploit this structure most effec-
tively have time and space complexities exponential in the
induced width of the constraint graph (Dechter 1992). One
such algorithm (Frost & Dechter 1994) applies unrestricted
learning during backtrack search. Because the exponential
space requirement of unrestricted learning is often impracti-
cal, we investigate the effects of space-bounded learning on
runtime complexity. There are two distinct methods for lim-
iting the space consumption of learning. One bounds the
size of the constraints recorded (Dechter 1990; Frost &
Dechter 1994), and the other records constraints of arbitrary
size, but deletes those that become irrelevant to the current
portion of the search space being explored (Ginsberg 1993;
Ginsberg & McAllester 1994).

We define graph parameters that reflect the exponential
complexity of backtrack search enhanced with each of these
two learning schemes. With respect to bounding runtime,
we find that relevance-bounded learning is a better invest-
ment of space than size-bounded learning. Further, our lin-
ear space relevance-bounded learning algorithm has
runtime complexity (near that of unrestricted
learning schemes (). An analysis of expected
values for and on randomly generated graphs reveals

O exp l1()()
O exp w*()()

l1 w*
that is usually within a small constant of , and that
dedicating more space to learning further reduces the differ-
ence in runtime bounds.

Our results are similar to several other structure-exploit-
ing techniques. What distinguishes this work from the
cycle-cutset method (Dechter 1990) and graph-splitting
techniques (Freuder & Quinn 1985; Bayardo & Miranker
1995) is we do not require positioning variables with few
constraints between them first in the ordering in order to
effectively bound runtime. We demonstrate that our tech-
niques provide good bounds across a wide variety of graph
arrangement policies. Unlike schemes that exploit nonsepa-
rable components of the constraint graph (Freuder 1985;
Dechter & Pearl 1987), our algorithms are backtrack-driven
and require no exponential time preprocessing phases. They
thereby preserve good performance on easy instances and
allow application of additional proven backtrack enhance-
ment schemes including lookahead (Nadel 1988), conflict-
directed backjumping (Prosser 1993), and restricted forms
of dynamic variable ordering (Bayardo & Miranker 1995).

Definitions and Problem Statement

A constraint satisfaction problem (CSP) consists of a set of
variables, a finite value domain, and a set of constraints.
The idea is to assign values to variables such that no con-
straint is violated. More formally, an assignment is a map-
ping of values to some subset of the variables. A constraint
is a set of assignments (called nogoods) that map values to
the same set of variables. An assignment is said to violate a
constraint if any nogood from the constraint is contained
within the assignment. A partial solution is an assignment
which violates no constraint. A solution to the CSP is a par-
tial solution mentioning every variable.

The constraint graph of a CSP has a vertex for each vari-
able and the property that variables mentioned in a con-
straint are completely connected. A value is said to
instantiate a variable with respect to a partial solution
if is itself a partial solution. We will denote
the number of variables in a CSP with and the number of
values in its value domain with .

In this paper, we investigate the complexity of determin-
ing whether a CSP has a solution. The algorithms we
present can be easily extended to return a solution when one
exists. While deciding CSP solubility is NP-complete, it is

l1 w*

v
x S

S x v,〈 〉{ }∪
n

k

 th

ug-

tal
ce
ch-
d-

s-
the
 of

f a
er,
her
ce,
ot
 so
b-

le
is
possible to define tractable subclasses by restricting con-
straint graph structure. For example, some algorithms have
runtime exponential in the height of a depth-first search
(DFS) tree of the constraint graph (Dechter 1992). We can
define a tractable subclass of CSP by restricting attention to
those instances that, after arrangement by some specific
DFS procedure, have a DFS tree with bounded by some
constant.

We define constraint graph parameters similar to for
reflecting the exponent in the runtime complexity of our
restricted learning algorithms. To preserve generality, we
state runtime complexity in terms of how many domain val-
ues are considered by the algorithm. Specifically, a value is
said to be considered whenever the algorithm checks to see
whether it instantiates some variable. Runtime can be
bounded by multiplying the number of domain values con-
sidered with the complexity of verifying an instantiation.
Complexity of verifying an instantiation depends on the
arity of the constraints (how many variables mentioned by
its nogoods) as well as implementation specific factors.
Typically if the instance is binary (all constraints are of
arity 2), the complexity of verifying an instantiation is

. This is because nogoods which map values to the
same set of variables can be grouped into a single compati-
bility matrix to be tested in constant time.

Rooted-Tree Arrangements

We begin by reviewing the concept of rooted-tree arrange-
ments for improving runtime complexity of backtrack
search. We use this result as a starting framework to which
various learning schemes will be added and evaluated.

A rooted tree is a noncyclic graph whose edges are
directed away from the root vertex and towards the leaves.
A branch of a rooted tree is a path from the root vertex to
some leaf. A rooted-tree arrangement of a graph (Gavril
1977)1 is a rooted tree with the same set of vertices as the
original graph and the property that adjacent vertices from
the original graph must reside in the same branch of the
rooted tree. The concept is illustrated in Figure 1. Directed
edges represent a rooted-tree arrangement of the vertices.
For illustrative purposes, the original constraint graph
edges are displayed as dashed arcs to demonstrate that adja-
cent vertices appear along the same branch.

Backtrack algorithms can exploit rooted-tree arrange-
ments to improve runtime complexity on some instances.
Such an algorithm appears in Figure 2. We refer to the
working assignment as the set of instantiations made to the
current subproblem’s ancestors. The algorithm traverses

1 It is not clear whether pseudo-tree as defined in (Freuder &
Quinn 1985) is equivalent to a rooted-tree arrangement or
depth-first search (DFS) tree. Nevertheless, a rooted-tree
arrangement is a slight generalization of DFS tree (Bayardo
& Miranker 1995), and the results from (Freuder & Quinn
1985) apply to both.

h

h

h

O n()
e

rooted-tree arrangement in a depth-first manner as s
gested by Dechter (1992) with respect to DFS trees.

If denotes the height of the rooted tree, then the to
number of values considered by Tree-Solve is sin
recursion depth is bounded by . Correctness of the te
nique follows from the fact that any subtree of the roote
tree arrangement corresponds to a subproblem whose solu-
bility is determined only by the instantiations of its ance
tors -- by definition, there are no constraints between
subproblem variables and those within other branches
the rooted tree.

Unrestricted Learning

Tree-Solve exploits the fact that only the instantiations o
subproblem’s ancestors affect its solubility status. Howev
the constraint graph structure can often be used to furt
reduce the set of responsible instantiations. For instan
consider variable from Figure 1. Ancestor does n
connect to any variable in the subproblem rooted at ,
the instantiation of is irrelevant with respect to this su
problem’s solubility. More generally, given an ancestor
of a subproblem , if does not connect to any variab
within the subproblem , then the instantiation of
irrelevant with respect to its solubility.

FIGURE 1. A graph and a rooted-tree arrangement
of the graph.

x1

x2

x3

x9x8

x10

x4

x5

x6
x7

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

TREE-SOLVE()
let denote the root variable of
for each value instantiating w.r.t. the working assignment

for each subproblem corresponding to the subtree
rooted at a child of

if TREE-SOLVE() = FALSE
then try another value (continue outer for loop)

return TRUE
return FALSE

P
x P

v x
Pc

x
Pc

v

FIGURE 2. An algorithm for backtracking along a
rooted-tree arrangement

h
O nkh()

h

x4 x2
x4

x2
xa

P xa
P xa

DEFINITION 4.1: The defining set of a subproblem is the set
of ancestors that are connected to at least one subproblem
variable in the constraint graph.

Figure 3 provides the defining sets for the subproblems
within the previous example. Subproblems are identified by
their root variables. The concept of induced width (Dechter
1992) is equivalent to defining set size, and we elaborate
further on the relationship in the appendix. We use this
atypical definition since (we feel) it makes the subproblem
relationships more explicit, and thereby simplifies the com-
plexity proofs.

Suppose Tree-Solve is attempting to solve a subproblem
 with defining set . The working assignment, when

restricted to variables within , is called the defining set
assignment of . If is determined to be unsolvable, we
can record its defining set assignment as an additional
nogood. Should the assignment resurface, since we have
made note of it as a nogood, Tree-Solve() can immedi-
ately return FALSE instead of attempting the subproblem
again. Similarly, if has been successfully solved given a
particular defining set assignment, should the assignment
resurface, Tree-Solve() can immediately return TRUE.
This requires recording the assignment as a good (Bayardo
& Miranker 1994). Dechter (1990) calls the recording of
additional nogoods during backtrack search learning. We
use this term to apply to the recording of goods as well.

Figure 4 illustrates the described learning extensions. We
now consider the effect of these extensions on runtime
complexity. First, the size of the largest defining set in the
rooted tree will be denoted with the parameter . For
example, the problem in Figure 3 has . Next, we
say the root variable of a subproblem is visited whenever
the subproblem is attempted. We denote the number of
times a variable is visited by .

LEMMA 4.2: Given a subproblem with root variable
and defining set size , .

Proof: A good or nogood is recorded with each attempt at
solving . There are only unique defining set assign-

ds x1() ∅=
ds x2() x1{ }=
ds x3() x1 x2,{ }=
ds x4() x3{ }=
ds x5() x3 x4,{ }=
ds x6() x4 x5,{ }=
ds x7() x4{ }=
ds x8() x1 x2,{ }=
ds x9() x1 x2 x8, ,{ }=
ds x10() x2 x9,{ }=

FIGURE 3. Defining sets of each subproblem.

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

P X
X

P P

P

P

P

w*

w* 3=

x v x()

P x
s v x() ks≤

P ks
ments of . After visits, every possible defining set
assignment is recorded as good or nogood, so the sub-
problem rooted at will not be attempted again.

THEOREM 4.3: The number of values considered by the
unrestricted learning algorithm is .

Proof: Each time a variable is visited, at most values
are considered. Recall that the number of variables is
and the largest defining set size is . By lemma 4.2, the
algorithm visits at most variables total, so total
values considered is .

Theorem 4.3 is similar to a result in (Frost & Dechter
1994). The difference here is that due to the addition of
good recording and a different proof technique, we reduce
the bound on domain values considered from exponential in
the number of variables to linear. While this improvement
may seem minor at this point since we have reduced only
the base of the exponent, the algorithmic differences are
necessary for the results developed in the following sec-
tions.

The space requirement of Learning-Tree-Solve with
unrestricted learning is . This is because there are

 variables, up to (no)goods are recorded for each
variable, and each (no)good is up to (which we regard
as a constant) in size.

Size-Bounded Learning

Since space is often a more precious resource than time, it
may be desirable to improve space complexity in exchange
for a small runtime penalty. Dechter (1990) suggests
recording nogoods of limited size, and defines th order
[size-bounded] learning as the scheme in which only those
(no)goods of size or less are recorded, where is a con-
stant less than . Consider modifying the Learning-Tree-
Solve algorithm to perform th order size-bounded learn-
ing. After doing so, learning is only performed at variables
with a defining set of size or less. Its space complexity is

LEARNING-TREE-SOLVE()
if the defining set assignment of is good

then return TRUE
if the defining set assignment of is nogood

then return FALSE
let denote the root variable of
for each value instantiating w.r.t. the working assignment

for each subproblem corresponding to the subtree
rooted at a child of

if LEARNING-TREE-SOLVE() = FALSE
then try another value (continue outer for loop)

Record the defining set assignment of as a good
return TRUE

Record the defining set assignment of as a nogood
return FALSE

P
P

P

x P
v x

Pc
x

Pc
v

P

P

FIGURE 4. Tree-Solve extended with unrestricted
learning capabilities.

*
*
*
*

*

*

P ks

x

O nkw* 1+()

k
n

w*

O nkw*()
O nkw* 1+()

O nkw*()
n kw*

w*

i

i i
w*

i

i

rg

 is
air

ral-
ce-
on

s.

are

r-
eo-
s an
ded

-

 are
ow

se,
t
t at
e
re

es-
st
e

d
le
e
ce
ng
is
ot
go-
),

e
 as
d
at
o
rn-

s

el-

e
he
le
thereby . The effect on runtime complexity is as fol-
lows:

LEMMA 5.1: Given a variable whose defining set has
size , .

Proof: See arguments from Lemma 4.2.

LEMMA 5.2: Given a variable whose defining set has
size , where denotes the distance in
edges between and its nearest ancestor where learning
is performed.

Proof: Follows from Lemma 5.1 and the fact that
 where is the parent of in the tree.

DEFINITION 5.3: Let denote the maximum of for
each variable in the rooted tree.

THEOREM 5.4: The number of values considered by the
size-bounded learning algorithm is .

Proof: Follows from Lemma 5.2 and the fact that at most
 values are considered with each variable visit.

Figure 5 illustrates the values of and from the
example problem. Variables at which learning is performed
are highlighted (recall that these are the variables whose
defining sets have size or less). The large arrows point to
the variables which have the maximum value of . For
this instance, second-order size-bounded learning achieves
a runtime complexity equivalent to unrestricted learning
even though its space requirement is quadratic instead of
cubic.

Relevance-Bounded Learning

Another approach for bounding the space consumption of
learning is to record (no)goods at every backtrack point, but
to also delete (no)goods when they are no longer considered
“relevant”. For instance, Dynamic Backtracking (Ginsbe

O nk()

x
s i≤ v x() ki≤

x
s i> v x() ki d+≤ d

x

v x() k v xp()⋅≤ xp x

di d i+

O nkdi 1+()

k

d1 1 3+ 4= =
d2 2 1+ 3= =

FIGURE 5. Effects of first and second-order size-
bounded learning.

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

d1 d2

i
d i+
1993) records nogoods of arbitrary size; but, a nogood
deleted once it contains more than one variable-value p
not appearing in the working assignment. We now gene
ize the notion of relevance to define a class of relevan
bounded learning schemes. A similar generalizati
appears in (Ginsberg & McAllester 1994).

DEFINITION 6.1: A (no)good is -relevant if it differs from
the working assignment in at most variable-value pair

DEFINITION 6.2: An th order relevance-bounded learning
scheme maintains only those derived (no)goods that

-relevant.

Now consider modifying Learning-Tree-Solve to pe
form th order relevance-bounded learning. The next th
rem establishes that relevance-bounded learning require
asymptotically equivalent amount of space as size-boun
learning of the same order.

THEOREM 6.3: Space consumption of the relevance
bounded learning algorithm is .

Proof: Consider a variable with defining set . If
has size or less, then the (no)goods recorded at
always relevant, and occupy space. Suppose n
that the size of is greater than . For this ca
(no)goods recorded at are sometimes deleted. Le
denote the set of (no)goods recorded at that exis
some point in time. By definition of relevance and th
search order of the algorithm, the (no)goods in a
equivalent when restricted to the uppermost anc
tors in . This implies that has size at mo

. Overall space complexity is therefor
.

The effect on runtime complexity of relevance-bounde
learning is complicated, so we begin with an examp
before jumping into formalities. Consider bounding th
number of visits to variable from the example instan
when first-order relevance-bounded learning is bei
applied. Recall that the defining set of variable

. Note that the subproblem rooted at cann
affect the instantiation of . Therefore, as long as the al
rithm is solving the subproblem rooted at (call it
all constraints recorded at remain 1-relevant. After
visits to variable while solving , we therefore hav
that all possible combinations of have been recorded
good or nogood. Variable will therefore not be visite
again until we are done solving . We thus have th

. We next generalize this idea to apply t
any instance and any order of relevance-bounded lea
ing.

LEMMA 6.4: Given a variable whose defining set ha
size , .

Proof: Since (no)goods of size or less are always -r
evant, simply apply the arguments from Lemma 4.2.

Given a vertex with defining set , let denot
the member of that is the th nearest to along t
branch from to the root. For instance, from our examp

i
i

i

i

i

O nki()

x X X
i x

O ki()
X i

x S
x

S
s i–

X S
X ki O ki()=
O nki()

x10

x10
x2 x9,{ } x8

x2
x8 P8

x10 k
x10 P8

x9
x10

P8
v x10() k v x8()⋅≤

i

x
s i≤ v x() ki≤

i i

x X A x j,()
X j x

x

 is
ed
ee
the
 a
 on
s,
ce,

ent
ow
est
 all
dth.
ts
ily
the
problem, , and . Further, let
 denote the child of that resides on the same

branch as . Thus, .

LEMMA 6.5: Given a vertex whose defining set is bigger
than , .

Proof: As long as the instantiation of variable
and the instantiations of its ancestors remain unchanged,
by definition, the (no)goods recorded at are -relevant.
Consider then the subproblem rooted at

. Solving this subproblem does not
affect the instantiations of and its ancestors,
so all (no)goods recorded at while attempting
remain -relevant until we are done attempting . The
number of visits to variable while attempting is
bounded by since after visits, all possible instantia-
tions of the defining set members within subproblem
are recorded as good or nogood. The claim follows
immediately from this fact.

DEFINITION 6.6: Let denote the largest exponent from
each bound derived from applying lemmas 6.4 and 6.5 to
every variable in the problem.

THEOREM 6.7: The number of values considered by the rel-
evance-bounded learning algorithm is .

Proof: Clear.

Figure 6 illustrates the value of for our example prob-
lem. Since bounds the number of visits to any variable,

. First-order relevance-bounded learning thereby
achieves runtime complexity equivalent to unlimited learn-
ing on this instance, while using only space.

Comparison of , , and

Maximum defining set size is a lower-bound for and
for any . It is important to know how close these parame-
ters come to in order to determine whether polynomial
space restrictions provide a worthwhile trade-off. This sec-

A x10 1,() x9= A x10 2,() x2=
C y x,() y

x C x2 x10,() x8=

x
i v x() ki v C A x i 1+,() x,()()⋅≤

A x i 1+,()

x i
P

C A x i 1+,() x,()
A x i 1+,()

x P
i P

x P
ki ki

P

li

O nkli 1+()

v x1() 1=
v x2() k≤
v x3() k v x2()⋅ k

2≤ ≤
v x4() k≤
v x5() k v x4()⋅ k

2≤ ≤
v x6() k v x5()⋅ k3≤ ≤
v x7() k≤
v x8() k v x2()⋅ k2≤ ≤
v x9() k v x8()⋅ k3≤ ≤
v x10() k v x8()⋅ k3≤ ≤

l1 3=

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

FIGURE 6. Effects of first-order relevance-
bounded learning.

l1
k3

l1 3=

O nk()

li di h w*

li di
i

w*
tion provides such an evaluation, concluding that pro-
vides a close approximation of even when . We
also show that usually is less than , implying rele-
vance-bounded learning provides a better investment of
space than does size-bounded learning.

Minimizing by cleverly arranging the variables is
NP-hard (Arnborg 1985). It is likely that finding the rooted-
tree arrangement that minimizes either , , or for any

 is also NP-hard due to its close relation to this and other
NP-hard problems. As a result, a heuristic is often used to
arrange the variables of a graph. Then, a structure-based
technique is applied with respect to that arrangement. In
this section, we evaluate the expected values of the various
parameters when using this approach.

 Figure 7 plots the expected values of the graph parame-
ters , , , , and . The rooted-tree arrange-
ment policy we used was to apply depth-first search to find
an arbitrary DFS tree. Each point on the plot represents the
average parameter value from 100 connected graphs with
100 vertices. Graphs were generated randomly with the
number of edges specified by the horizontal axis. To ensure
connectivity, a random spanning tree was greedily gener-
ated from a random starting point, and then the remaining
edges added in. An additive factor of 1 is applied to each
parameter other than so that it reflects the actual expo-
nent in its algorithm’s runtime complexity function.

The figure reveals that relevance-bounded learning
more effective at bounding runtime than size-bound
learning. In fact, we usually have that . We also s
that relevance-bounded learning closely approximates
effects of unrestricted learning: both and are within
small constant of throughout the plotted range where
average, and . The fewer the edge
the closer the expected values of and . For instan
when the number of edges is 119 or less, .

We repeated these experiments with other arrangem
policies, and the results appear in Figure 8. Note that n

 is sometimes better than , but only for the spars
graphs. For the maximum degree arrangement policy,
parameters (even) are reasonably close to induced wi
This policy positions several variables with few constrain
between them first in the arrangement since it greed
selects the remaining variable with the most edges in

li
w* i 1=

l1 d3

w*

h di li
i

h d1 d3 l1 l3 w*

h

l1 d3<

l1 l3
w*

l3 w* 5+≤ l1 w* 6+≤
li w*

l1 w* 3+≤

0

10

20

30

40

50

60

100 110 120 130 140 150

Av
er

ag
e

Pa
ra

me
te

r
Va

lu
e

Edges in Constraint Graph

DFS arrangement policy

w*+1
l_3+1
l_1+1
d_3+1
d_1+1

h

FIGURE 7. Expected parameter values: DFS
arrangement

d3 l1

h

constraint graph. Over all arrangement policies investi-
gated, we see that on average, . Whatever the
arrangement heuristic applied, relevance-bounded learning
seems to always produce a runtime bound near that of unre-
stricted learning. The more space dedicated to learning, the
more closely the effect of unrestricted learning is approxi-
mated. Size-bounded learning, on the other hand, approxi-
mates unrestricted learning only for the sparsest graphs.
After a certain point, size-bounded learning fails to perform
much (if any) learning since the defining sets become too
large.

It is possible to relate and to other parameters from
the literature. For instance, it is easy to define an arrange-
ment policy such that given a cycle-cutset of size ,

. Similarly, given a graph with nonseparable com-
ponent size of , we can define an arrangement policy such
that . Due to length restrictions, we leave the
details of these policies as exercises to the reader.

Conclusions and Future Work

We have presented and theoretically evaluated backtrack-
based algorithms for tractable constraint satisfaction on
structurally-restricted instances. The runtime complexity of
backtrack search enhanced with unrestricted learning is
known to be exponential in . We defined similar graph
parameters for backtrack enhanced with th order size-
bounded learning () and th order relevance-bounded
learning (). An evaluation of expected values of these
parameters reveals that is within a small constant of

l3 l1 2w*≤ ≤

0

10

20

30

40

50

60

100 110 120 130 140 150

Av
er
ag
e
Pa
ra
me
te
r
Va
lu
e

Edges in Constraint Graph

Minimum Width arrangement policy

w*+1
l_3+1
l_1+1
d_3+1
d_1+1

h

0

10

20

30

40

50

60

100 110 120 130 140 150

Av
er

ag
e

Pa
ra

me
te

r
Va

lu
e

Edges in Constraint Graph

Maximum Degree arrangement policy

w*+1
l_3+1
l_1+1
d_3+1
d_1+1

h

FIGURE 8. Expected parameter values: minimum
width and maximum degree arrangements.

li di

c
l1 c 1+≤

r
l1 d≤ 1 r≤

w*

i
di i

li
li w*
for sparse instances, and within a factor of 2 for all cases
explored. Further, (linear-space consuming relevance-
bounded learning) is often much less than (cubic space-
consuming size-bounded learning). From this we conclude
that relevance-bounded learning is a better investment of
space resources than size-bounded learning, and that our
low-order relevance bounded learning algorithm provides a
space-efficient alternative to unrestricted learning in appli-
cations requiring tractable constraint satisfaction on struc-
turally-restricted instances. One potential application is
real-time multi-join query evaluation since multi-join que-
ries have a graph structure that is typically assumed to be
tree or nearly-tree structured (Swami 1989). Heuristic algo-
rithms for the CSP and related problems are prone to patho-
logical behavior (Gent & Walsh 1996), and are thereby
inappropriate for real-time domains.

We suspect the theoretical differences between the vari-
ous learning schemes will hold with respect to average-case
performance on denser instances, and leave the issue open
to future study. The algorithms from this paper have been
given the minimal functionality needed to achieve the
stated bounds. However, since they are all variations of
standard backtrack search, they remain open to additional
backtrack optimizations known to improve average-case
performance. For instance, the algorithms use statically-
determined culprits for every possible failure. Techniques
such as conflict-directed backjumping (Prosser 1993) apply
runtime derived information to potentially minimize the set
of culprits even further. Dynamic ordering of the variables
is another powerful technique for improving average-case
performance (Haralick & Elliot 1980). Structure-based
techniques impose some restrictions on the variable
arrangements, but rooted-tree search procedures are open to
a limited form of search rearrangement. The idea is at any
point we can attempt the open subproblems in any order
(Bayardo & Miranker 1995). Finally, lookahead techniques
such as forward checking (Nadel 1988) can help realize
failures earlier in the search. Integrating lookahead with our
algorithms is straightforward because the defining sets,
since they are derived from structure alone, identify a set of
culprits that is not affected by the particular mechanism
used to identify failure within a given subproblem.

Acknowledgments

This research was supported in part by an AT&T Bell Labo-
ratories Ph.D. fellowship.

Appendix

Here we demonstrate the equivalence of maximum defining
set size and induced width. The parameters are different
only in that one is defined with respect to a rooted-tree
arrangement of the graph, and the other with respect to an
ordering of the graph vertices. We demonstrate equivalence
by showing (1) a graph with a rooted-tree arrangement can
be ordered so that induced width is equivalent to maximum

l1
d3

defining set size, and (2) given an ordered graph, we can
obtain a rooted-tree arrangement whose maximum defining
set size is equal to induced width of the ordered graph.

Induced width is a property of a graph with an ordering
imposed on its vertices. A child of a vertex in an ordered
graph is a vertex that is adjacent to and follows in the
ordering. The induced graph of an ordered graph is an
ordered graph with the same ordered set of vertices as
and the smallest set of edges to contain the edges of and
enforce the property that any two vertices sharing a child
are adjacent. We can build the induced graph of by itera-
tively connecting any nonadjacent vertices that share a
child. The width of a vertex in an ordered graph is the num-
ber of parents it has in the graph. The induced width of the
ordered graph () is the maximum of the widths from
each vertex in the induced graph.

We can obtain a rooted-tree arrangement of a graph
from its induced graph as follows: Let the first vertex
along the ordering be the root of . A vertex is a child
of another vertex if and only if is the first node to
follow in the ordering, and have the property that
and are adjacent in (the induced graph).

Figure 9 illustrates the process. To create the induced
graph, we first note that in the original graph, vertices 1 and
4 share the child 5, therefore an induced edge is added
between them. After adding this edge, we now have that
vertices 1 and 2 share the child 4, so edge (1,2) is added.
This completes the process of forming the induced graph.
The rooted-tree arrangement of the ordered graph is dis-
played to the right of the induced graph. To form the tree,
we simply keep those edges from the induced graph that
connect a vertex its nearest child.

A property of the rooted-tree arrangement provided by
the procedure is that the defining set of any subproblem is
equivalent to its set of parents in the induced graph. We
have therefore described a process for obtaining a rooted-
tree arrangement whose largest defining set size is equiva-
lent to induced width. We can similarly obtain an ordered
graph from a rooted tree arrangement whose induced width
is equivalent to the largest defining set size: simply order
the nodes of the graph according to a depth-first traversal of
the rooted tree.

v
v v

G
G

G

G

w*

T G
G’

T xb
xa xb

xa xa
xb G’

1

2

3 4

5

1

2

3 4

5

FIGURE 9. An ordered graph, the edges (dashed)
added to form the induced graph, and its backtrack

tree.
References
Arnborg, S. 1985. Efficient Algorithms for Combinatorial
Problems on Graphs with Bounded Decomposability--A Sur-
vey. BIT 25:2-23.

Bayardo, R. J. and Miranker, D. P. 1994. An Optimal Back-
track Algorithm for Tree-Structured Constraint Satisfaction
Problems. Artificial Intelligence 71(1):159-181.

Bayardo, R. J. and Miranker, D. P. 1995. On the Space-Time
Trade-Off in Solving Constraint Satisfaction Problems. In
Proc. 14th Intl. Joint Conf. on Artificial Intelligence, 558-562.

Dechter, R. 1990. Enhancement Schemes for Constraint Pro-
cessing: Backjumping, Learning, and Cutset Decomposition.
Artificial Intelligence 41(3):273-312.

Dechter, R. 1992. Constraint Networks. In Encyclopedia of
Artificial Intelligence, 2nd ed., 276-285. New York, NY:
Wiley.

Dechter, R. and Pearl, J. 1987. Network-Based Heuristics for
Constraint-Satisfaction Problems. Artificial Intelligence 34:1-
38.

Freuder, E. C. 1985. A Sufficient Condition for Backtrack-
Bounded Search. J. Association for Computing Machinery
32(4):755-761.

Freuder, E. C. and Quinn, M. J. 1985. Taking Advantage of
Stable Sets of Variables in Constraint Satisfaction Problems. In
Proc. Ninth Intl. Joint Conf. on Artificial Intelligence, 1076-
1078.

Frost, D. and Dechter, R. 1994. Dead-End Driven Learning. In
Proc. Twelfth National Conf. on Artificial Intelligence, 294-
300.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness. New
York, NY: W. H. Freeman and Co..

Gavril, F. 1977. Some NP-complete Problems on Graphs,
Proc. 11th Conf. on Information Sciences and Systems, 91-95.
Cited through (Garey & Johnson 1979, pg. 201).

Gent, I. P. and Walsh, T. 1996. The Satisfiability Constraint
Gap. Artificial Intelligence 81.

Ginsberg, M. L. 1993. Dynamic Backtracking. J. Artificial
Intelligence Research 1:25-46.

Ginsberg, M. L. and McAllester, D. A. 1994. GSAT and
Dynamic Backtracking. In Proc. Fourth International Conf. on
Principles of Knowledge Representation and Reasoning, 226-
237.

Haralick, R. M. and Elliot, G. L. 1980. Increasing Tree Search
Efficiency for Constraint Satisfaction Problems. Artificial
Intelligence 14:263-313.

Nadel, B. 1988. Tree Search and Arc Consistency in Con-
straint-Satisfaction Algorithms. In Search in Artificial Intelli-
gence, 287-342. New York, NY: Springer-Verlag.

Prosser, P. 1993. Hybrid Algorithms for the Constraint Satis-
faction Problem. Computational Intelligence 9(3):268-299.

Swami, A. 1989. Optimization of Large Join Queries: Combin-
ing Heuristics and Combinatorial Techniques. In Proc. 1989
ACM SIGMOD Intl. Conf. on Management of Data, 367-376.

	Introduction
	Definitions and Problem Statement
	Rooted-Tree Arrangements
	Unrestricted Learning
	Size-Bounded Learning
	Relevance-Bounded Learning
	Comparison of , , and
	Conclusions and Future Work
	Acknowledgments
	Appendix
	References

