
The Hows, Whys, and Whens of Constraints in
Itemset and Rule Discovery

Abstract. Many researchers in our community (this author included) regularly
emphasize the role constraints play in improving performance of data-mining
algorithms. This emphasis has led to remarkable progress -- current algorithms
allow an incredibly rich and varied set of hidden patterns to be efficiently
elicited from massive datasets, even under the burden of NP-hard problem
definitions and disk-resident or distributed data. But this progress has come at a
cost. In our single-minded drive towards maximum performance, we have often
neglected and in fact hindered the important role of discovery in the knowledge
discovery and data-mining (KDD) process. In this paper, I propose various
strategies for applying constraints within algorithms for itemset and rule mining
in order to escape this pitfall.1

1 Introduction
Constraint-based pattern mining is the process of identifying all patterns in a given
dataset that satisfy the specified constraints. There are many types of patterns we may
wish to explore, depending on the data or its expected use. To name only a few, we
have itemsets, sequences, episodes, substrings, rules, trees, cliques, and so on. The
important aspect of constraint-based mining is not so much the specific patterns being
identified, but the fact that we would like to identify all of them subject to the given
constraints. This task of constraint-based mining is in contrast to heuristic pattern min-
ing which attempts only to identify patterns which are likely (but not guaranteed) to be
good according to certain criteria. A third task which I will touch upon only briefly,
optimization-based pattern mining, attempts to identify only those patterns that are
guaranteed to be (among the k-) best according to certain metrics.

While many may assign constraint-based mining a high face value solely from
plethora of research on the topic, it is illustrative to take a step back and contemplate
why it is a task worthy of our interest. Indeed, long before the “association rule” was a
household name, heuristic pattern miners were proving extremely useful in machine
learning circles. In fact, heuristic rule miners, which include decision tree (“divide and
conquer”) and covering (“separate and conquer”) algorithms, remain essential compo-
nents in the analyst’s toolbox. I witnessed a growing interest in constraint-based min-

1 My use of he informal “I” rather than the typical “we” is to emphasize this paper is a personal
position statement, along with a view of existing research in light of my position.

Roberto J. Bayardo
IBM Almaden Research Center

bayardo@alum.mit.edu
http://www.almaden.ibm.com/cs/people/bayardo/

ing once heuristic machine learning approaches gained reasonably widespread use in
practice. The white-box nature of decision tree and other rule-based models were
being used directly for end-user understanding of the data, even though they were not
specifically intended for that purpose.1 Use of these rule-based models for understand-
ing led to questions such as the following:

o Do these rules capture and convey the “essence” of the relationship(s) in my data?

o Are there better rules (and who gets to define better)?

Note that each of these questions is open to some amount of subjective interpreta-
tion. But this is the point: the analyst is typically involved in knowledge discovery in
which subjective and difficult to formalize notions of “goodness” are guiding the pro-
cess, not simply data mining in which an algorithm follows a deterministic procedure
to extract patterns that may or (more often) may not be of interest. Provided that con-
straints are used sensibly (and what “sensibly” means is the subject of this paper), con-
straint-based mining fosters discovery by providing the analyst with a broad result set
capable of concretely answering a far wider set of questions than one that is heuristi-
cally determined.

A theme of this paper is that there are different phases of the knowledge discovery
process in which we can exploit constraints, and the specific use of constraints should
be dependent on when (in what phase) we are using them. During the mining phase, I
argue that constraints should be discovery preserving. That is, they should filter out
only those results that are highly unlikely to ever be of interest to the analyst. This
admittedly informal notion of preserving discovery is in stark contrast to other propos-
als that envision query languages for constraint-based mining in which every imagin-
able constraint is enforced directly by the mining phase. The problem with this
alternate view is simply that the analyst rarely knows the specific results of interest a
priori (no pun intended). Constraints should therefore be used during the mining phase
primarily for performance tractability. Discovering the precise results of interest is best
left for post-processing of the mining results through interactive interfaces involving
visualization, browsing, and ranking.

Recall that optimization-based pattern discovery forms an interesting middle-
ground between the heuristic and constraint-based approaches: unlike heuristic
approaches, it provides guarantees on result quality. Unlike constraint-based
approaches, it provides these guarantees without requiring the extraction of all patterns
matching the constraints, the number of which can be enormous. While these are desir-
able attributes, once again we are confronted with the question of what makes one rule
better than the other. Optimization-based approaches allow no ambiguity on the part of
the analyst since the ranking function is part of the input, if not hard-coded into the
algorithm itself. Should an optimization-based approach be required (for example it is
possible the pattern space is simply too large for constraints alone), I argue it is desir-

1 It is therefore ironic that association rule miners are now commonly used in building general
classification models, even though originally this was not their intended use!

able for the approach to provide some ability to select and adjust the ranking criteria
post-mining [6]. It is tempting to view an optimization criteria as itself just another
constraint to be enforced by a constraint-based miner. Viewed as such, an optimization
criteria is actually a constraint on the set of patterns rather than a constraint on the
properties of the individual patterns. I believe this distinction is important enough to
justify treating optimization-based approaches as separate from constraint-based ones.

As researchers, once we are convinced why something is useful, we become
obsessed with how we can achieve it. And with constraint-based mining, the how part
is particularly interesting due to huge computational challenges. Many constraint-
based mining tasks can be proven NP-hard through reductions from problems such as
constraint satisfaction, hitting set, prime implicant, and so on. Worse, the datasets
involved often attain volumes beyond which standard data management strategies can
efficiently cope. Then there is the issue of ensuring the results of our algorithms have
statistical merit. This combination of search, data management, and statistical issues
has provided ample research fodder for our community.

I cannot hope to even begin to address all interesting aspects of the hows in con-
straint-based mining in this short paper, but I will discuss some (often neglected)
issues that I feel fit with in the context of discovery preservation. While much of what
remains to be discussed applies to pattern mining in general, for concreteness sake, I
focus in particular on itemsets and association rules. An itemset is simply a set of val-
ues appearing in a given dataset. An association rule is itself an itemset along with
additional information specifying the division of items into antecedent and consequent
subsets. The seminal work on association rule mining produced algorithms employing
two distinct phases: (1) mine the frequent itemsets from the data, (2) output the rules of
interest from them. While this two-phase approach was for the most part an opera-
tional detail of the mining algorithm, researchers (again, this author included) have
been eager to build on only the first phase as if itemsets themselves are the output
desired by the end user. I am quick to agree that itemsets are indeed sometimes the arti-
fact of interest in data-mining. But that said, I believe, by and large, that the desired
outcome of mining is more often rules since they express easy to interpret relation-
ships between dataset elements that itemsets alone do not.

Luckily, many itemset constraints are themselves useful rule constraints, thus work
in constraint-based itemset mining often has direct applications in constraint-based
rule mining. There are, however, many constraints that are specific to rules such as
bounds on confidence, lift, and other measures of predictive accuracy, and they have
gone virtually ignored outside of result post-processing. To be fair, another reason
rule-specific constraints have been ignored is that they do not fall into any of the con-
venient constraint classes that have been found to be easily enforceable during mining.
But the fact is that many of these rule constraints can be broken down into constituents
that do fall into these classes. I will overview previous work in which properties of
these constituents have been exploited for effective enforcement during mining given
appropriate structuring of the search. That said, coming back to my original thesis, we
typically would not want to enforce arbitrary rule constraints during mining to avoid
hindering discovery. I therefore provide examples of rule constraints that can be

regarded as discovery preserving, along with a framework for their enforcement dur-
ing mining.

2 Constraints in the Discovery Process
It is well-known that knowledge discovery is a multi-phase and iterative process [11].
The data preparation and data-mining stages are often the most costly in terms of com-
pute overhead. Thus, if possible, iteration should be restricted to subsequent phases
(such as post-processing) in which it can be performed quickly. In the context of pat-
tern mining, the role of the data-mining algorithm should be to transform the (prepro-
cessed) data-set into a representation that allows for interactive browsing, ranking, and
querying. “Interactive” means that the effects of changing a parameter, for example via
a graphical control, are almost instantaneous. The following figure depicts this view.

Fig. 1. Idealized View of the Mining Process

In some cases the input dataset may be sufficiently compact and the mining suffi-
ciently trivial to allow the data-mining algorithm to be re-applied in real time to sup-
port interactivity. Mining caches can be used to further improve response [15,17],
though I have doubts that cache hit rates will be significant enough for this to be of
much use in practice.

More often, an intermediate representation is required to satisfy interactive
response requirements. In the case of constraint-based rule and itemset mining, this
intermediate representation is typically some collection of itemsets with their associ-
ated support values. For some datasets it might be possible to precompute the support
of all possible itemsets and store them in an indexed database. However, most non-
trivial datasets have enough items to make this impractical, as the number of itemsets
increases exponentially with the number of items. A solution is to apply constraints to
reduce the size of the mining result and the time required to obtain it, preferably with-
out excluding patterns that are of interest to the analyst. I argue that a good mining
engine constraint has the following properties:

1. It is tweakable: post-mining, if the constraint is parameterized, the parameter
should be adjustable without requiring expensive processing such as scanning or
re-mining the original dataset.

Mining Engine Ranking
Visualization
Querying engine

Itemsets/Rules

Itemsets/
Rules

User Ranking/Browsing/Query criteria

Data

Discovery preserving
constraints

2. It provides efficiency: applying the constraint should make the algorithm run sig-
nificantly more efficiently. At this phase we are more concerned with using con-
straints for achieving tractability, and not necessarily in speeding up mining by a
small constant.

3. It preserves discovery: the constraint, if it limits the sets of questions the analyst
may efficiently pose during post-processing, should eliminate only those questions
that are unlikely to be of value.

Properties 1 and 2 allow for the system itself to specify constraints automatically to
ensure tractability of the mining run. The user is then able to efficiently adjust the con-
straints after the fact if necessary. Property 3 implies that the system has a low proba-
bility of excluding patterns that may have otherwise been found interesting by the user.

Property 3 is clearly the most subjective. Indeed, any pattern elimination can prob-
ably be rationalized as eliminating something useful for some purpose. However there
are some constraints that do satisfy these properties in most settings. One example is a
very low setting of minimum support. (1) Minimum support can be easily adjusted
upwards post-mining without going back to the original dataset. One only needs to fil-
ter (or ignore) those itemsets whose supports falls below the modified limit. (2) Mini-
mum support has been proven to provide significant boosts in efficiency during
mining, even at relatively low settings. (3) Minimum support, provided it can be set
low enough, preserves discovery since results with extremely low support are unlikely
to be statistically valid.

Is minimum support enough? I feel it is safe to say that for “market-basket” and
other sparse datasets, the answer is wholeheartedly yes. In fact, minimum support as
exploited by the earliest of association rule miners (such as Apriori) is often entirely
sufficient. In figure 2, I reprint with permission two graphs from a recent workshop on
frequent itemset mining implementations (FIMI-03 [12]) in which participants submit-
ted implementations for apples-to-apples comparison on a variety of datasets. For the
sparse datasets, Borgelt’s Apriori implementation outperformed most of the newer
algorithms. Only for the very lowest support settings on the bmspos dataset was it out-
performed by any significant amount. The point is that for any significantly complex
mining task, the transformation and mining phases will be applied offline. Whether an
algorithm requires one versus two hours to complete is not a major concern if iteration
is relegated to post-processing.

Dense datasets tell a different story. Most tabular datasets with more than a handful
of columns are sufficiently dense to render minimum support pruning woefully inade-
quate. In the FIMI-03 experiments, minimum support was the only constraint consid-
ered, and the minimum support levels attainable by any algorithm on the densest
datasets were nowhere near what would be necessary to find any reasonably predictive
rules [6]. We must therefore ask, what other constraints might we employ? Another
good constraint is that the mining artifacts, whether itemsets or rules, be in a sense
non-redundant. In the rule mining context, I noted in [8] that when an itemset has sup-
port equivalent to that of one of its subsets, it is redundant in the sense that it leads only
to rules that are equivalent to existing rules in predictive accuracy and the population
covered. It is a simple matter to prune such itemsets in order to avoid excessive count-

ing due to equivalent supports. This idea is the basis of what is now commonly known
as freeness and closure [13,19,25] in the context of itemset mining, and also what I
called “antecedent maximality” in the context of rule mining [6]. Closure, while not a
parameterized property, is in a sense tweakable since we can easily regenerate non-
closed itemsets (non-antecedent-maximal rules) from those in the set without dataset
access. While it doesn’t always help significantly (e.g. for sparse datasets), it certainly
doesn’t hurt performance. And finally, it doesn’t hinder discovery whatsoever since it
removes only redundant information which can be efficiently derived if necessary.

Unfortunately, I feel the benefits of closure are often overstated. It’s no surprise
that the Irvine “chess” and “connect-4” data-sets are the most common benchmarks for

Fig. 2. Performance of the FIMI-03 implementations on sparse datasets

demonstrating efficiency of closure-exploiting techniques. These datasets are rela-
tively small and completely noise free. In the real world, data has noise. Noise quickly
removes equivalence relations between itemsets, rendering closure-based pruning inef-
fective. Again, I refer to the FIMI-03 evaluation, where the algorithms employing clo-
sure remained ineffective on noisy dense data-sets such as pumsb, except under an
unreasonably high minimum support constraint.

As I further noted in [8], it is therefore worth exploiting “near equivalence”, which
is when an itemset has a support value that is within a very small amount of one of its
subsets. This idea has since been better formalized as the principle of -free sets [13].
Pruning nearly equivalent itemsets restricts the questions we can ask from the result,
but only slightly so. Further, it allows deriving of reasonably tight bounds on the sup-
port of any omitted itemset. While this makes the method very powerful in the itemset
mining domain, these bounds cannot be straightforwardly used to intuitively quantify
the effects on what rules are removed. But it is possible to perform some reasoning
about rules using delta freeness, as demonstrated by Cremilleux and Boulicaut [14]
who apply properties of delta free sets to characterizing classification rule conflicts. In
the next section, I present what I believe to be a better constraint when rules instead of
itemsets are the target pattern.

3 Discovery Preserving Rule-Specific Constraints
Rule-specific constraints are those that exploit properties specific to what distinguishes
rules from itemsets; namely, the separation of the itemset into antecedent () and con-
sequent () subsets (denoted). The most well known (and most often
derided!) rule constraint is minimum confidence. Confidence, in the context of associ-
ation rule mining, expresses the conditional probability with which the consequent
holds given the antecedent:

Confidence itself is not a bad metric. Along with knowledge of the background
consequent probability (frequency), it conveys as much information as lift and related
measures of predictive accuracy such as conviction [10]. It is my opinion that confi-
dence, being a probability, is easier to interpret than these alternative measures. The
problem with confidence stems from attempts at imposing a minimum bound in cases
where the consequent of rules is allowed to vary, as is the case in the traditional associ-
ation rule mining problem [1]. A single fixed minimum on confidence will exclude
highly predictive rules if their consequents have a very low frequency, and will allow
completely non-predictive rules if their consequents have high a high frequency. But
for rules which share the same consequent, the fact is that confidence, lift (also known
as interest) and conviction rank rules identically [7]. A minimum confidence constraint
in the case of consequent-constrained rule mining is actually a very useful constraint,
as it can be used to concisely exclude only non-predictive rules.1 I believe that exclud-
ing non-predictive rules is discovery preserving in most contexts, provided “non-pre-
dictive” is quantified in a sufficiently tight manner.

δ

A
C A C→

conf A C→() sup A C∪()
sup A()

---------------------------=

A constraint that excludes non-predictive results is a good start, but the fact is we
can do even better without unduly hindering discovery. Many rules are highly predic-
tive, but when considered in the appropriate context, are actually of little interest if the
goal is indeed to understand predictive relationships. For example, we might find a
highly predictive rule . But what if the rule is even more
predictive? The rule considered in isolation of such subrules might
lead to highly suboptimal decisions. The point is that one cannot fully understand the
predictive nature of a rule without also considering the predictive behavior of all its
proper subrules. (Formally, a subrule of a rule is any rule such that

.) This idea extends the notion that interpreting a rule from its confidence with-
out considering its consequent frequency is virtually meaningless.

So if we are to accept that the analyst is interested in discovering predictive rela-
tionships, another interesting and discovery preserving constraint would be to remove
all rules containing subrules that are more (or equally) predictive. (Note that this
notion encompasses pruning with support equivalence, since it’s easy to show a rule
that improves upon the predictive accuracy of all its subrules has no functional depen-
dencies between disjoint subsets of its antecedent.) When applying this constraint in
practice, the effects are indeed dramatic, but problems remain. While it is strictly more
powerful than pruning with closure, we are still plagued by “near equivalence” rela-
tionships between an itemset and its subsets. These near equivalences result in numer-
ous rule variations, each reflecting roughly the same relationships along with one or
more “noise” items. For example, we may again have that strongly predicts , say,
with a confidence value of 90%. But we may also find that there exist dozens of other
rules of the form with confidence greater than 90% but perhaps less
than 90.1%. Are these findings truly useful? I would argue in almost all cases they are
not. One way to exclude such effects of near-equivalence is through a minimum posi-
tive bound on the predictive improvement a rule offers over all its subrules. Formally, I
define the improvement value of a rule as the minimum of the differences between a
rule’s confidence and its proper subrules:

Note that alternate definitions of the improvement value are possible, for example

we could have defined improvement using ratios between confidence or lift values
instead of differences. I chose differences between confidences because I feel it is eas-
ier to interpret.

Instead of simply requiring that improvement be positive, we can instead require
that the improvement value of any rule exceed a specified bound. For example, a min-
imum improvement bound of .1 would exclude the noise rules from the examples

1 A minimum confidence constraint also excludes negatively predictive rules, which are often
of substantial interest. This can be avoided by also allowing the mining of rules that predict
the negation of the desired consequent.

i1 i2,{ } ic{ }→ i1{ } ic{ }→
i1 i2,{ } ic{ }→

A C→ A' C→
A' A⊆

i1 ic

i1{ } I∪ ic{ }→

improvement A C→()
MIN

A∀ ' s.t. A' A⊂()
= conf A C→() conf A' C→()–{ }

above. Experiments show that even such a very low minimum improvement setting
dramatically reduces the size of the result set and the time required to compute it [7].
Much as delta-free sets allow tight bounds on the support of any omitted itemset, a
minimum improvement filtered rule set allows for tight upper bounds on the predictive
ability of any omitted rule.

4 Enforcing Rule Constraints During Mining
Rule constraints such as minimums on confidence, lift, conviction and improvement
are not exploitable through generic constraint-based itemset mining frameworks [18]
because they are not classifiable as monotone, anti-monotone, succinct, convertible, or
by any other simple and easily exploitable property. How then can we hope to exploit
them during mining? Let us first consider the confidence value which I now rewrite
slightly:

In the above expression, the notation reflects a conceptual item that is con-
tained by any record that does not contain the consequent itemset. Such records are
deemed “negative examples” in the machine-learning context. Rewritten as such, note
that the expression is obviously monotone in and anti-monotone in

. Given that confidence consists of monotone and anti-monotone constit-
uents, is it possible to compute a reasonably tight bound on the confidence achievable
during mining? The answer is yes. The key is to explicitly keep track of all items that
can be appended to an itemset to form a descendent of the itemset in a tree-structured
search space. In the description of the Max-Miner algorithm [4], I referred to such a
structure as an itemset “group”, though a more mathematically precise term is perhaps
a “subalgebra” of the itemset lattice [9]. This concept has its roots in algorithms for
circuit optimization [22], though Webb [24] was first to formalize the concept within a
generic search framework, and also exploit it in rule mining tasks.

More formally, let’s assume the consequent itemset is fixed to and we are
searching over all possible antecedent itemsets for rules meeting various constraints. A
node in the search space is represented by a head itemset representing the anteced-
ent of the rule enumerated by the node, and another ordered itemset representing all
items that can be appended to to form descendents of in the search space. At
each node in the search space, before expanding the children of the node, we filter
items from that cannot possibly lead to rules satisfying the constraints. In many
cases, especially near the tree root, we may not be able to filter out any items. After fil-
tering , we obtain a new set whose size dictates the number of children of the
node. For each item in , the child expansion policy creates a new node with head
set and tail set .

Note then as we descend in the tree, the itemset always grows by exactly one
item with each level (hence its support is monotonically decreasing), and the itemset

 either shrinks or stays the same (hence its support is monotonically increasing).

conf A C→() sup A C∪()
sup A C∪() sup A c¬∪()+
--=

c¬

sup A C∪()
sup A c¬∪()

C

H
T

H H

T

T T′
i T′

H i{ }∪ j j T′ j follows i in the item ordering∧∈{ }
H

H T∪

A bound on the confidence of any rule derivable by the node and its descendents can
therefore be computed as follows:

Correctness of the bound computation follows directly from the monotonicity and
anti-monotonicity properties stated earlier. Conveniently, being able to bound confi-
dence allows us to also bound improvement of a rule: we simply compute

 for the proper subrule of
with the highest confidence.

This is a simple but illustrative example. In fact, we can break down the improve-
ment value itself into monotone and anti-monotone constituents to more directly
derive a complementary bound on the improvement attainable by any of a node’s
descendents. This example is considerably more involved, but the essential concepts
are the same. For the details I direct the reader to [7]. While not immediately obvious,
this particular bounding technique effectively exploits near equivalences between
antecedent subsets.

Constraint enforcement is a search space size issue, but in the data mining litera-
ture, its presentation is often confusingly intertwined with the particular data manage-
ment and traversal strategies employed. The constraint enforcement techniques such as
those from above are generic, and can be applied irrespective of breadth versus depth-
first search, and irrespective of whether we use database scans to compute supports
compared to more esoteric dataset representations involving database projections or
projected FP-tree structures. Contrary to what I sometimes find implied in the litera-
ture, using a depth-first search does not magically provide more pruning opportunities,
though it may simplify and optimize the gathering of necessary support information to
be able to apply them.

5 Conclusions
In summary, I have attempted to make several (hopefully controversial!) points regard-
ing the hows, whys, and whens of constraints in itemset and rule discovery:

1. First and foremost, while the utility of constraints in knowledge discovery is unde-
niable, they should be applied judiciously. In particular, apply during mining only
those constraints that are in a sense discovery preserving.

2. Apriori adequately solves the problem of mining itemsets and rules from market-
basket and other sparse datasets.

3. Itemset freeness/closure/equivalence is a powerful concept, but its effectiveness in
practice is limited. Consider exploiting constraints based on near-equivalence
instead, such as -freeness for itemsets and improvement thresholds for rules.

4. A rule cannot be fully interpreted in isolation from its subrules. This generalizes the
well-known fact that confidence in absence of the consequent frequency is mean-
ingless.

conf_bound H C→ T,() sup H C∪()
sup H C∪() sup H T c¬∪ ∪()+
--=

conf_bound H C→ T,() conf H' C→()– H' C→ H C→

δ

5. Itemset search methods should explicitly maintain the set of items that can be
appended to the enumerated itemset in order to form its descendents in the search
tree. Such explicit maintenance of lattice subalgebras allows exploiting both mono-
tone and anti-monotone function constituents for more general and more powerful
constraint enforcement.

6. Separating out issues of search space size from specific tree-traversal and data-
management strategies improves understanding of algorithm performance, and
increases the generality of constraint enforcement proposals.

7. Itemsets are not the only mining artifact of interest. Don’t ignore the implications
of mining-enforced constraints on what questions can be asked about the rules.

Now for the disclaimers. While I have stated each point as if it were maxim, I do
not deny there are certain situations where some may fail to apply. Also, I do not claim
to be the first to make them. Many similar points have been made within the literature
(see for example [16] and [21] which are related point 1), and some I have picked up
through osmosis from various talks and discussions. It is refreshing that even while I
am writing this draft, I continue to come across new relevant work [3]. I must therefore
apologize in advance for any references I have inevitably missed. For each point, I
hope to minimally have provided some new perspectives.

6 References
1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items

in Large Databases. In Proc. of the 1993 ACM-SIGMOD Conf. on Management of Data,
207-216, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast Discovery of
Association Rules. In Advances in Knowledge Discovery and Data Mining, AAAI Press,
307-328, 1996.

3. C. Antunes and A. L. Oliveira. Mining Patterns Using Relaxations of User Defined Con-
straints. In Proc. of the Workshop on Knowledge Discovery in Inductive Databases, 2004.

4. R. J. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of the 1998 ACM-
SIGMOD Int’l Conf. on Management of Data, 85-93, 1998.

5. R. J. Bayardo, The many roles of constraints in data mining. (Letter from the guest editor.)
ACM SIGKDD Explorations 4(1), i-ii, June 2002.

6. R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In Proc. of the Fifth ACM
SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, 145-154, 1999.

7. R. J. Bayardo, R. Agrawal, and G. Gunopulos. Constraint-based rule mining in large, dense
databases. In Proc. of the 15th Int’l Conf. on Data Engineering, 188-197, 1999.

8. R. J. Bayardo. Brute-force mining of high confidence classification rules. In Proc. of the
Third International Conference on Knowledge Discovery and Data Mining, 123-126, 1997.

9. C. Bucila, J. Gehrke, D. Kifer, DualMiner: A Dual-Pruning Algorithm for Itemsets with
Constraints. In Proc. SIGKDD-2002. In Proc. SIGKDD 2002.

10. S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and Implication
Rules for Market Basket Data. In Proc. of the 1997 ACM-SIGMOD Conf. on Management of
Data, 255-264, 1997.

11. R. J. Brachman and T. Anand. The Process Of Knowledge Discovery In Databases: A
Human-Centered Approach. In Advances In Knowledge Discovery And Data Mining, eds.
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, AAAI Press/The MIT
Press, Menlo Park, CA., 37-57, 1996.

12. B. Goethals and M. J. Zaki. Advances in Frequent Itemset Mining Implementations: Intro-
duction to FIMI-03. In Proc. of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations, 2003.

13. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries by means
of free-sets. In Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge Discovery,
pages 75-85, 2000.

14. B. Cremilleux, J-F. Boulicaut. Simplest rules characterizing classes generated by delta-free
sets. In: Proceedings of the 22nd BCS SGAI International Conference on Knowledge Based
Systems and Applied Artificial Intelligence, Cambridge (UK), 33-46, 2002.

15. B. Jeudy and J.-F. Boulicaut. Using Condensed Representations for Interactive Association
Rule Mining. In Proc. of Principles of Data Mining and Knowledge Discovery: 6th Euro-
pean Conference (PKDD 2002), 228-236, 2002.

16. J. Hipp and U. Güntzer. Is pushing constraints deeply into the mining algorithms really what
we want?: an alternative approach for association rule mining. ACM SIGKDD Explorations
4(1), 50-55, June 2002.

17. B. Nag, P. M. Deshpande, and D. J. DeWitt. Using a knowledge cache for interactive discov-
ery of association rules. In Proc. SIGKDD-1999, 244-253, 1999.

18. R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimiza-
tions of constrained associations rules. In Proc. SIGMOD-1998, 13-24, 1998.

19. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using
closed itemset lattices. Information Systems, 24(1):25-46, 1999.

20. R. Rymon. Search through systematic set enumeration. In Proc. of the Third Int’l Conf. on
Principles of Knowledge Representation and Reasoning, 539-550, 1992.

21. S. Sahar: Interestingness via What is Not Interesting. In Proc. of SIGKDD-1999: 332-336
22. J. R. Slagel, C.-L. Chang, and R. C. T. Lee. A New Algorithm for Generating Prime Impli-

cants. IEEE Trans. on Computers, C-19(4):304-310, 1970.
23. R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Constraints. In

Proc. of the Third Int’l Conf. on Knowledge Discovery in Databases and Data Mining, 67-
73, 1997.

24. G. I. Webb. Opus: an efficient admissible algorithm for unordered search. Journal of Artifi-
cial Intelligence Research 3, 431-465, 1995.

25. M. J. Zaki. Generating non-redundant association rules. In Proc. SIGKDD-2000, pages 34-
43, 2000.

	1 Introduction
	2 Constraints in the Discovery Process
	3 Discovery Preserving Rule-Specific Constraints
	4 Enforcing Rule Constraints During Mining
	5 Conclusions
	6 References

